cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141120 G.f. A(x) satisfies A(A(A(A(A(x))))) = x + 25*x^2.

Original entry on oeis.org

1, 5, -100, 3250, -127500, 5456250, -241875000, 10733906250, -463469531250, 18897269531250, -699306093750000, 21927485449218750, -487263216796875000, 923644008789062500, 602420821142578125000, -38171197412384033203125
Offset: 1

Views

Author

Paul D. Hanna, Jun 05 2008

Keywords

Examples

			G.f.: A(x) = x + 5*x^2 - 100*x^3 + 3250*x^4 - 127500*x^5 +5456250*x^6+...
A(A(x)) = x + 10*x^2 - 150*x^3 + 4125*x^4 - 140000*x^5 +5162500*x^6+...
A(A(A(x))) = x + 15*x^2 - 150*x^3 + 3375*x^4 - 96250*x^5 +2931250*x^6+...
A(A(A(A(x)))) = x + 20*x^2 - 100*x^3 + 1750*x^4 - 40000*x^5 +918750*x^6+..
		

Crossrefs

Programs

  • Maple
    X[1]:= unapply(x+c[2]*x^2, x):
    for i from 2 to 6 do
      S:= series((X[i-1]@@5)(x)-x-25*x^2,x,2^(i-1)+1);
      Sol:=solve({seq(coeff(S,x,k),k=2^(i-2)+1..2^(i-1))},{seq(c[k],k=2^(i-2)+1
      2^(i-1))});
      X[i]:= unapply(subs(Sol,X[i-1](x))+add(c[j]*x^j,j=2^(i-1)+1..2^(i)),x);
    od:
    seq(coeff(X[i](x),x,i),i=1..2^5)); # Robert Israel, Jul 20 2020
  • PARI
    {a(n, m=5)=local(F=x+m*x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F+((-polcoeff(G, k))/m)*x^k); return(polcoeff(F, n, x)))}

Formula

Define the sequence b(n,m) as follows. If nSeiichi Manyama, May 04 2024