cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141147 Number of linear arrangements of n blue, n red and n green items such that the first item is blue and there are no adjacent items of the same color (first and last elements considered as adjacent).

Original entry on oeis.org

2, 8, 44, 268, 1732, 11624, 80096, 562748, 4013396, 28964128, 211054120, 1550226880, 11463513440, 85257846080, 637243586944, 4783617720892, 36046416801268, 272543202174704, 2066898899119448, 15717398604230888
Offset: 1

Views

Author

Max Alekseyev, Jun 10 2008

Keywords

Crossrefs

Programs

  • Maple
    A141147 := n -> 2^n*hypergeom([n, (1-n)/2, -n/2],[1, 1],1);
    seq(simplify(A141147(i)),i=1..20); # Peter Luschny, Jan 15 2012
  • PARI
    { a(n) = sum(k=0,n\2, binomial(n,2*k) * binomial(2*k,k) * binomial(n-1+k,k) * 2^(n-2*k) ) }

Formula

a(n) = A110707(n) / 3 = (A000172(n) + A000172(n-1)) * 2 / 3.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2k) * binomial(2k,k) * binomial(n-1+k,k) * 2^(n-2k).
a(n) = 2^n*Hypergeometric([n,(1-n)/2,-n/2],[1, 1],1). - Peter Luschny, Jan 15 2012
Recurrence: (3*n^3 + 13*n^2 + 16*n + 4)*a(n+2) = (21*n^3 + 73*n^2 + 74*n + 16)*a(n+1) + (24*n^3 + 32*n^2)*a(n). - Ralf Stephan, Feb 11 2014
a(n) = (1/n) * Sum_{k = floor(n/2)..n} k * binomial(n,k)^2 * binomial(2*k,n). - Peter Bala, Mar 19 2023