A141162 Smallest k such that lambda(k) = n, or 0 if there is no such k.
1, 3, 0, 5, 0, 7, 0, 32, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 224, 0, 0, 0, 29, 0, 31, 0, 128, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 115, 0, 47, 0, 119, 0, 0, 0, 53, 0, 81, 0, 928, 0, 59, 0, 61, 0, 0, 0, 256, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 187, 0, 83, 0, 203, 0, 0, 0, 89, 0, 209, 0, 235, 0, 0, 0, 97, 0
Offset: 1
Keywords
Examples
a(8) = 32 because lambda(32) = 8.
Programs
-
Maple
with(numtheory):for k from 1 to 100 do:id:=0:for n from 1 to 1000 while(id=0) do: if lambda(n) = k then id:=1:printf(`%d, `,n):else fi:od:if id=0 then printf(`%d, `,0):else fi:od:
-
Mathematica
nn = 100; t = Table[0, {nn}]; Do[c = CarmichaelLambda[k]; If[c <= nn && t[[c]] == 0, t[[c]] = k], {k, 1000}]; t
Comments