cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141165 Primes of the form 9*x^2+7*x*y-5*y^2.

Original entry on oeis.org

3, 5, 11, 17, 19, 43, 61, 71, 83, 97, 103, 149, 151, 167, 181, 233, 271, 277, 293, 307, 311, 337, 367, 373, 397, 401, 409, 421, 431, 433, 457, 463, 467, 491, 557, 569, 587, 631, 641, 661, 673, 683, 701, 733, 743, 751, 757, 769, 787, 821, 859, 863, 883, 911
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 229. Class = 3. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac. They can represent primes only if gcd(a,b,c)=1. [Edited by M. F. Hasler, Jan 27 2016]
Also primes represented by the improperly equivalent form 5*x^2+7*x*y-9*y^2. - Juan Arias-de-Reyna, Mar 17 2011
36*a(n) has the form z^2 - 229*y^2, where z = 18*x+7*y. [Bruno Berselli, Jun 25 2014]
Appears to be the complement of A141166 in A268155, primes that are squares mod 229. - M. F. Hasler, Jan 27 2016

Examples

			a(10)=97 because we can write 97= 9*3^2+7*3*1-5*1^2
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory
  • D. B. Zagier, Zetafunktionen und quadratische Körper

Crossrefs

Cf. A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65). A141166 (d=229).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    q := 9*x^2 + 7*x*y - 5*y^2; pmax = 1000; xmax = xmax0 = 50; ymin = ymin0 = -50; ymax = ymax0 = 50; k = 1.3 (expansion coeff. for maxima *); prms0 = {}; prms = {2}; While[prms != prms0, xx = yy = {}; prms0 = prms; prms = Reap[Do[p = q; If[2 <= p <= pmax && PrimeQ[p], AppendTo[xx, x]; AppendTo[yy, y]; Sow[p]], {x, 1, If[xmax == xmax0, xmax, Floor[k*xmax]]}, {y, If[ymin == ymin0, ymin, Floor[k*ymin]], If[ymax == ymax0, ymax, Floor[k*ymax]]}]][[2, 1]] // Union; xmax = Max[xx]; ymin = Min[yy]; ymax = Max[yy]; Print[Length[prms], " terms", "  xmax = ", xmax, "  ymin = ", ymin, "  ymax = ", ymax ]]; A141165 = prms (* Jean-François Alcover, Oct 26 2016 *)
  • PARI
    is_A141165(p)=qfbsolve(Qfb(9,7,-5),p) \\ Returns nonzero (actually, a solution [x,y]) iff p is a member of the sequence. For efficiency it is assumed that p is prime. - M. F. Hasler, Jan 27 2016
    
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([9, 7, -5])
    print(Q.represented_positives(911, 'prime')) # Peter Luschny, Oct 26 2016