cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141212 a(n) = 1, if n == {1,3,4} mod 6; otherwise 0.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 14 2008

Keywords

Examples

			a(7) = 1 since 7 == 1 mod 6.
		

Crossrefs

Programs

  • Mathematica
    Table[If[MemberQ[{1,3,4},Mod[n,6]],1,0],{n,120}] (* or *) PadRight[{},120,{1,0,1,1,0,0}] (* Harvey P. Dale, May 03 2013 *)

Formula

a(n) = 1 if n is in A029739, otherwise 0.
Begin with the sequence S: (1,0,1,0,1,0,...) and create a hole every 3n-th place: 1,0_1,0_1,0_1,0_,... Then insert terms of the sequence S in the holes.
From R. J. Mathar, Jun 17 2008: (Start)
O.g.f.: x(1+x^2+x^3)/((1-x)(1+x)(x^2+x+1)(x^2-x+1)).
a(n) = 1/2+A049347(n-1)/2-(-1)^n/6-A087204(n)/6 = a(n-6). (End)
a(n) = ((Fibonacci(n+4) mod 4) mod 3) mod 2. - Gary Detlefs, Dec 29 2010