cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A141279 Primes p such that p - 6^2, p - 6, p + 6 and p + 6^2 are also primes.

Original entry on oeis.org

47, 53, 67, 73, 103, 233, 277, 353, 373, 607, 947, 977, 1187, 1223, 1487, 1663, 2683, 2693, 2713, 2963, 3307, 3733, 4457, 5443, 6323, 6863, 7523, 9007, 11903, 11933, 12107, 12547, 12583, 15313, 15767, 18217, 19427, 20107, 20753, 21523, 22073
Offset: 1

Views

Author

Rick L. Shepherd, Jun 21 2008

Keywords

Comments

Subsequence of A006489. A141280 and A141281 are subsequences.

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=And@@PrimeQ[{n-36,n-6,n+6,n+36}]; Select[Prime[Range[10,3000]],pQ]  (* Harvey P. Dale, Feb 02 2011 *)
    Select[Prime[Range[10,3000]],AllTrue[#+{-36,-6,6,36},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 05 2018 *)

A141280 Primes p such that p-6^3, p-6^2, p-6, p, p+6, p+6^2 and p+6^3 are primes.

Original entry on oeis.org

233, 353, 977, 1663, 2693, 4457, 5443, 11933, 20107, 23333, 23893, 41263, 108923, 110813, 294347, 554633, 730783, 748603, 851387, 928643, 1005013, 1008193, 1020043, 1150873, 1194763, 1326313, 1427963, 1477103, 2161337, 2212003
Offset: 1

Views

Author

Rick L. Shepherd, Jun 21 2008

Keywords

Comments

Subsequence of A006489 and A141279. A141281 is a subsequence.

Crossrefs

Programs

  • Mathematica
    p6Q[n_]:=With[{c=6^Range[3]},AllTrue[Join[n+c,n-c],PrimeQ]]; Select[ Prime[ Range[ 50,200000]],p6Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 06 2015 *)

A141282 Least prime p such that p-6^n, ..., p-6, p, p+6, ... and p+6^n are primes.

Original entry on oeis.org

11, 47, 233, 11459317
Offset: 1

Views

Author

Rick L. Shepherd, Jun 22 2008

Keywords

Comments

This pattern is impossible for n >= 5. See A141281.

Examples

			a(4) = 11459317 as this is the least prime p such that p-6^4, p-6^3, p-6^2, p-6, p, p+6, p+6^2, p+6^3 and p+6^4 are all prime. The nine primes are 11458021, 11459101, 11459281, 11459311, 11459317, 11459323, 11459353, 11459533 and 11460613.
		

Crossrefs

Formula

a(1) = A006489(1), a(2) = A141279(1), a(3) = A141280(1), a(4) = A141281(1).
Showing 1-3 of 3 results.