cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141291 a(n) = 4*a(n-1) + 2*n - 1.

Original entry on oeis.org

0, 1, 7, 33, 139, 565, 2271, 9097, 36403, 145629, 582535, 2330161, 9320667, 37282693, 149130799, 596523225, 2386092931, 9544371757, 38177487063, 152709948289, 610839793195, 2443359172821, 9773436691327, 39093746765353, 156374987061459, 625499948245885, 2501999792983591
Offset: 0

Views

Author

Gary W. Adamson, Jun 22 2008

Keywords

Examples

			a(4) = 139 = 4*a(3) + 7 = 4*33 + 7.
a(4) = 139 = sum of row 4 terms of triangle A141290 = (64, + 48 + 20 + 7).
		

Crossrefs

Cf. A141290.

Programs

  • Mathematica
    LinearRecurrence[{6,-9,4},{0,1,7},27] (* Stefano Spezia, May 21 2024 *)

Formula

a(n) = 4*a(n-1) + 2*n-1, given a(0) = 0, a(1) = 1.
Row sums of triangle A141290 starting with offset 1.
From R. J. Mathar, Feb 02 2010: (Start)
a(n) = 6*a(n-1) -9*a(n-2) +4*a(n-3).
G.f.: x*(1+x)/((1-4*x)*(x-1)^2). (End)
E.g.f.: exp(x)*(5*(exp(3*x) - 1) - 6*x) /9. - Stefano Spezia, May 21 2024

Extensions

Definition and formula corrected by Paolo P. Lava, Oct 07 2008
More terms from R. J. Mathar, Feb 02 2010