cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A141290 Triangle read by rows, descending antidiagonals of a (1, 3, 5, ...) * (1, 4, 16, ...) multiplication table.

Original entry on oeis.org

1, 3, 4, 5, 12, 16, 7, 20, 48, 64, 9, 28, 80, 192, 256, 11, 36, 112, 320, 768, 1024, 13, 44, 144, 448, 1280, 3072, 4096, 15, 52, 176, 576, 1792, 5120, 12288, 16384, 17, 60, 208, 704, 2304, 7168, 20480, 49152, 65536, 19, 68, 240, 832, 2816, 9216, 28672, 81920, 196608, 262144
Offset: 1

Views

Author

Gary W. Adamson, Jun 22 2008

Keywords

Comments

Binary representation of all terms ends in an even number of zeros (cf. A003159).

Examples

			Given the multiplication table (1, 3, 5, ...) * (1, 4, 16, ...); i.e., odd numbers as column headings, powers of 4 along the left border:
   1,   3,   5,   7, ...
   4,  12,  20,  28, ...
  16,  48,  80, 112, ...
  64, 192, 320, 448, ...
  ...
Rows of the triangle = descending antidiagonals of the array, getting:
   1;
   3,  4;
   5, 12,  16;
   7, 20,  48,  64;
   9, 28,  80, 192,  256;
  11, 36, 112, 320,  768, 1024;
  13, 44, 144, 448, 1280, 3072,  4096;
  15, 52, 176, 576, 1792, 5120, 122288, 16384;
  ...
		

Crossrefs

Programs

  • Mathematica
    A[n_,k_]:=(2k-1)*4^(n-1); Table[A[k,n-k+1],{n,10},{k,n}]//Flatten (* Stefano Spezia, May 21 2024 *)

Formula

From Stefano Spezia, May 21 2024: (Start)
G.f. as array: x*y*(1 + y)/((1 - 4*x)*(1 - y)^2).
E.g.f. as array: (exp(4*x) - 1)*(exp(y)*(1 - 2*y) - 1)/4. (End)

Extensions

a(14), a(36) corrected by Peter Munn, Aug 27 2019

A172285 a(n) = (5*2^n - 5*(-1)^n - 3*n*(-1)^n) / 9.

Original entry on oeis.org

0, 2, 1, 6, 7, 20, 33, 74, 139, 288, 565, 1142, 2271, 4556, 9097, 18210, 36403, 72824, 145629, 291278, 582535, 1165092, 2330161, 4660346, 9320667, 18641360, 37282693, 74565414, 149130799, 298261628, 596523225, 1193046482, 2386092931, 4772185896
Offset: 0

Views

Author

Paul Curtz, Jan 30 2010

Keywords

Crossrefs

Programs

  • Magma
    [(5*2^n - 5*(-1)^n - 3*n*(-1)^n) / 9: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
    
  • Maple
    A172295 := proc(n) (5*2^n - 5*(-1)^n - 3*n*(-1)^n) / 9 ; end proc: seq(A172295(n), n=0..100) ; # R. J. Mathar, Feb 02 2010
  • Mathematica
    Table[(5*2^n - 5*(-1)^n - 3*n*(-1)^n)/9, {n, 0, 40}] (* Wesley Ivan Hurt, Aug 27 2015 *)
  • PARI
    first(m)=vector(m,i,i--;(5*2^i -5*(-1)^i - 3*i*(-1)^i ) / 9) \\ Anders Hellström, Aug 27 2015

Formula

a(n) = 3*a(n-2) + 2*a(n-3), n>2.
a(n+1) = 2*a(n) + (-1)^n * (2+n).
a(n) = A053088(n-1) + A001045(n), n>0.
a(n) = A000079(n) - A053088(n).
a(2n) = A141291(n). a(2n+1) = 2*A164044(n).
G.f.: x*(2+x)/( (1-2*x)*(1+x)^2 ).

Extensions

Definition replaced by explicit formula; g.f. added - R. J. Mathar, Feb 02 2010

A243528 Integers n such that p = 4n + 1, q = 4p + 3, r = 4q + 5, s = 4r + 7 and t = 4s + 9 are all prime.

Original entry on oeis.org

1564, 4057, 4654, 5884, 26599, 30139, 37204, 66532, 74227, 80812, 98137, 113929, 124249, 138604, 245524, 249847, 250879, 299767, 309469, 315277, 340504, 346279, 359467, 362674, 367069, 401407, 410332, 435049, 437377, 438799, 537844, 550582, 579814, 587047
Offset: 1

Views

Author

Zak Seidov, Jun 06 2014

Keywords

Comments

The first prime n is 4057.

Examples

			First 3 values of n, p, q, r, s and t:
{1564, 6257, 25031, 100129, 400523, 1602101},
{4057, 16229, 64919, 259681, 1038731, 4154933},
{4654, 18617, 74471, 297889, 1191563, 4766261}.
		

Programs

  • Magma
    A141291:=func; [n: n in [1..10^6] | forall{i: i in [1..5] | IsPrime(4^i*n + A141291(i))}]; // Bruno Berselli, Jun 06 2014
  • Mathematica
    pqrstQ[n_]:=Module[{p=4n+1,q,r,s},q=4p+3;r=4q+5;s=4r+7;AllTrue[{p,q,r,s,4s+9},PrimeQ]]; Select[Range[590000],pqrstQ] (* Harvey P. Dale, Jan 18 2024 *)
Showing 1-3 of 3 results.