cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141293 Primes p of the form 4*k+1 which are not of the form r^2 + 1.

Original entry on oeis.org

13, 29, 41, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 181, 193, 229, 233, 241, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 593, 601, 613, 617, 641, 653, 661, 673, 701, 709, 733, 757, 761, 769
Offset: 1

Views

Author

A.K. Devaraj, Jun 23 2008

Keywords

Comments

Equivalently, prime factors of numbers of the form x^2 + 1 which themselves are not of this form.
Same as A002144 with A002496 removed.

References

  • A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.

Crossrefs

Programs

  • Mathematica
    Complement[Select[4*Range[400]+1, PrimeQ], Select[Range[40]^2+1, PrimeQ]] (* T. D. Noe, Jun 27 2008 *)
    Select[Prime[Range[200]],IntegerQ[(#-1)/4]&&!IntegerQ[Sqrt[#-1]]&] (* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    forprime(p=3,1000,if(p%4==1&&!issquare((p-1)/4),print1(p,", "))) \\ Joerg Arndt, Jul 01 2012
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(p%4==1, listput(v,p))); v=setminus(Set(v), vector(sqrtint(lim\4),i,4*i^2+1)) \\ Charles R Greathouse IV, Jun 10 2017

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 10 2017

Extensions

Corrected and extended by T. D. Noe and N. J. A. Sloane, Jun 27 2008