cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141318 Euler transform of A025225.

Original entry on oeis.org

1, 2, 7, 28, 139, 762, 4549, 28464, 184742, 1230348, 8362298, 57756888, 404218046, 2860222020, 20428192842, 147072637472, 1066221149519, 7776835940430, 57028407361537, 420199462347876, 3109418928328473, 23098206138595710, 172184651286785655, 1287629984135461888
Offset: 0

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Keywords

Comments

Dimensions of the graded components of the domain of cocommutativity of the Hopf algebra of 2-colored planar binary trees.

Crossrefs

Cf. A025225.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add((2^d)*binomial(2*d-2,d-1),
                       d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 27 2012
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * 8^n / n^(3/2), where c = 0.23667440081254669364903300472... . - Vaclav Kotesovec, Sep 04 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 28 2017