cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115683 Numbers that are the product of 2 palindromes greater than 1.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 54, 55, 56, 63, 64, 66, 72, 77, 81, 88, 99, 110, 121, 132, 154, 165, 176, 198, 202, 220, 222, 231, 242, 262, 264, 275, 282, 297, 302, 303, 308, 322, 330, 333
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			262 = 2 * 131.
264 = 6 * 11.
275 = 5 * 55.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    N:=4; # to get terms <= 2*10^N
    Pals:= $2..9:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Pals:= Pals, seq(n*10^m + revdigs(n), n=10^(m-1)..10^m-1);
      else
        m:= (d-1)/2;
        Pals:= Pals, seq(seq(n*10^(m+1)+y*10^m+revdigs(n), y=0..9), n=10^(m-1)..10^m-1);
      fi
    od:
    Pals:= {Pals}: nP:= nops(Pals):
    P2:= select(`<`,{seq(seq(Pals[i]*Pals[j],j=1..i),i=1..nP)},2*10^N):
    sort(convert(P2,list)); # Robert Israel, Mar 16 2020
  • Mathematica
    pal = Select[ Range[2, 400], # == FromDigits@ Reverse@ IntegerDigits@ # &]; Select[Union[Times @@@ Tuples[pal, 2]], # <= 400 &] (* Giovanni Resta, Jun 20 2016 *)

A140332 Products of two palindromes in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 54, 55, 56, 63, 64, 66, 72, 77, 81, 88, 99, 101, 110, 111, 121, 131, 132, 141, 151, 154, 161, 165, 171, 176, 181, 191, 198
Offset: 1

Views

Author

Jonathan Vos Post, May 28 2008

Keywords

Comments

Geneviève Paquin, p. 5: "Lemma 3.7: a Christoffel word can always be written as the product of two palindromes."
Contains A115683 and A141322 as proper subsets.

Crossrefs

Programs

  • Maple
    digrev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end:
    N:=3:
    Res:= $0..9:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1);
      else
        m:= (d-1)/2;
        Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1);
      fi
    od:
    Palis:= [Res]:
    Res:= 0:
    for i from 2 to nops(Palis) while Palis[i]^2 <= 10^N do
      for j from i to nops(Palis) while Palis[i]*Palis[j] <= 10^N do
         Res:= Res, Palis[i]*Palis[j];
    od od:sort(convert({Res},list)); # Robert Israel, Jan 06 2020
  • Mathematica
    pal = Select[ Range[0, 200], # == FromDigits@ Reverse@ IntegerDigits@ # &]; Select[ Union[ Times @@@ Tuples[pal, 2]], # <= 200 &] (* Giovanni Resta, Jun 20 2016 *)

Formula

Extensions

Data corrected by Giovanni Resta, Jun 20 2016
Showing 1-2 of 2 results.