A140332 Products of two palindromes in base 10.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 54, 55, 56, 63, 64, 66, 72, 77, 81, 88, 99, 101, 110, 111, 121, 131, 132, 141, 151, 154, 161, 165, 171, 176, 181, 191, 198
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Geneviève Paquin, On a generalization of Christoffel words: epichristoffel words, arXiv:0805.4174 [math.CO], 2008-2009.
Programs
-
Maple
digrev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end: N:=3: Res:= $0..9: for d from 2 to N do if d::even then m:= d/2; Res:= Res, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1); else m:= (d-1)/2; Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1); fi od: Palis:= [Res]: Res:= 0: for i from 2 to nops(Palis) while Palis[i]^2 <= 10^N do for j from i to nops(Palis) while Palis[i]*Palis[j] <= 10^N do Res:= Res, Palis[i]*Palis[j]; od od:sort(convert({Res},list)); # Robert Israel, Jan 06 2020
-
Mathematica
pal = Select[ Range[0, 200], # == FromDigits@ Reverse@ IntegerDigits@ # &]; Select[ Union[ Times @@@ Tuples[pal, 2]], # <= 200 &] (* Giovanni Resta, Jun 20 2016 *)
Extensions
Data corrected by Giovanni Resta, Jun 20 2016
Comments