A141390 Overpseudoprimes to base 5.
781, 1541, 5461, 13021, 15751, 25351, 29539, 38081, 40501, 79381, 100651, 121463, 133141, 195313, 216457, 315121, 318551, 319507, 326929, 341531, 353827, 375601, 416641, 432821, 453331, 464881, 498451, 555397, 556421, 753667, 764941, 863329, 872101, 886411
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..327 (calculated from the b-file at A020231)
- V. Shevelev, Overpseudoprimes, Mersenne Numbers and Wieferich Primes, arXiv:0806.3412 [math.NT], 2008-2012.
- V. Shevelev, G. Garcia-Pulgarin, J. M. Velasquez and J. H. Castillo, Overpseudoprimes, and Mersenne and Fermat numbers as primover numbers, arXiv preprint arXiv:1206:0606, 2012. - From _N. J. A. Sloane_, Oct 28 2012
- V. Shevelev, G. Garcia-Pulgarin, J. M. Velasquez and J. H. Castillo, Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers, J. Integer Seq. 15 (2012) Article 12.7.7.
Programs
-
Mathematica
ops5Q[n_] := CompositeQ[n] && GCD[n, 5] == 1 && MultiplicativeOrder[5, n]*(DivisorSum[n, EulerPhi[#]/MultiplicativeOrder[5, #] &] - 1) + 1 == n; Select[Range[6, 10^6], ops5Q] (* Amiram Eldar, Jun 24 2019 *)
-
PARI
isok(n) = (n>5) && !isprime(n) && (gcd(n,5)==1) && (znorder(Mod(5,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(5, d))) - 1) + 1 == n); \\ Michel Marcus, Oct 25 2018
Extensions
Inserted a(2) and a(8) and extended at the suggestion of Gilberto Garcia-Pulgarin by Vladimir Shevelev, Feb 06 2012
Comments