A141351 a(n) = C(n) + 1 - 0^n where C(n) = A000108(n).
1, 2, 3, 6, 15, 43, 133, 430, 1431, 4863, 16797, 58787, 208013, 742901, 2674441, 9694846, 35357671, 129644791, 477638701, 1767263191, 6564120421, 24466267021, 91482563641, 343059613651, 1289904147325, 4861946401453, 18367353072153, 69533550916005
Offset: 0
Links
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
Programs
-
Maple
a:= n-> signum(n)+binomial(n+n,n)/(n+1): seq(a(n), n=0..30); # Alois P. Heinz, Apr 13 2023
Formula
G.f.: c(x) + x/(1-x), where c(x) is the g.f. of A000108.
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Oct 15 2014
Comments