cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141351 a(n) = C(n) + 1 - 0^n where C(n) = A000108(n).

Original entry on oeis.org

1, 2, 3, 6, 15, 43, 133, 430, 1431, 4863, 16797, 58787, 208013, 742901, 2674441, 9694846, 35357671, 129644791, 477638701, 1767263191, 6564120421, 24466267021, 91482563641, 343059613651, 1289904147325, 4861946401453, 18367353072153, 69533550916005
Offset: 0

Views

Author

Paul Barry, Jun 27 2008

Keywords

Comments

Hankel transform is A141352.
For n >= 2, a(n) is the number of parking functions of size n avoiding the patterns 132, 213, 231, and 312. - Lara Pudwell, Apr 12 2023

Crossrefs

Programs

  • Maple
    a:= n-> signum(n)+binomial(n+n,n)/(n+1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 13 2023

Formula

G.f.: c(x) + x/(1-x), where c(x) is the g.f. of A000108.
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Oct 15 2014
a(n) = A000108(n) + A057427(n). - Alois P. Heinz, Apr 13 2023