A141407 a(n) = binomial(n+7,7)*6^n.
1, 48, 1296, 25920, 427680, 6158592, 80061696, 960740352, 10808328960, 115288842240, 1175946190848, 11545653510144, 109683708346368, 1012465000120320, 9112185001082880, 80187228009529344, 691614841582190592, 5858384540460908544, 48819871170507571200, 400836836978904268800
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (48,-1008,12096,-90720,435456,-1306368,2239488,-1679616).
Crossrefs
Cf. A038255.
Programs
-
Magma
[6^n* Binomial(n+7, 7): n in [0..20]]; // Vincenzo Librandi, Oct 12 2011
-
Maple
seq(binomial(n+7,7)*6^n,n=0..16);
-
Mathematica
Table[Binomial[n + 7, 7] 6^n, {n, 0, 16}] (* Michael De Vlieger, Jul 24 2017 *)
-
PARI
vector(15,n,binomial(n+6,7)*6^(n-1)) \\ Derek Orr, Jul 24 2017
Formula
O.g.f.: 1/(1-6x)^8. - R. J. Mathar, Aug 08 2008
a(n) = 48*a(n-1) - 1008*a(n-2) + 12096*a(n-3) - 90720*a(n-4) + 435456*a(n-5) - 1306368*a(n-6) + 2239488*a(n-7) - 1679616*a(n-8) for n > 7. - Chai Wah Wu, Nov 12 2021
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 656250*log(6/5) - 239295/2.
Sum_{n>=0} (-1)^n/a(n) = 4941258*log(7/6) - 7616973/10. (End)
Comments