A141434 Triangle T(n, k) = (k-1)*(3*n-k-1), read by rows.
0, 0, 3, 0, 6, 10, 0, 9, 16, 21, 0, 12, 22, 30, 36, 0, 15, 28, 39, 48, 55, 0, 18, 34, 48, 60, 70, 78, 0, 21, 40, 57, 72, 85, 96, 105, 0, 24, 46, 66, 84, 100, 114, 126, 136, 0, 27, 52, 75, 96, 115, 132, 147, 160, 171
Offset: 1
Examples
Triangle begins as: 0; 0, 3; 0, 6, 10; 0, 9, 16, 21; 0, 12, 22, 30, 36; 0, 15, 28, 39, 48, 55; 0, 18, 34, 48, 60, 70, 78; 0, 21, 40, 57, 72, 85, 96, 105; 0, 24, 46, 66, 84, 100, 114, 126, 136; 0, 27, 52, 75, 96, 115, 132, 147, 160, 171;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A255211 (row sums).
Programs
-
Magma
[(k-1)*(3*n-k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 01 2021
-
Maple
A141434:= (n,k) -> (k-1)*(3*n-k-1); seq(seq(A141434(n,k), k=1..n), n=1..12); # G. C. Greubel, Apr 01 2021
-
Mathematica
Table[(k-1)*(3*n-k-1), {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Apr 01 2021 *)
-
Sage
flatten([[(k-1)*(3*n-k-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 01 2021
Formula
Sum_{k=1..n} T(n,k) = (n-1)*n*(7*n-5)/6. - R. J. Mathar, Sep 07 2011