A363398 Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (2*j + 1)^n), (secant case).
1, 3, 3, 7, 36, 25, 15, 297, 625, 343, 31, 2106, 10000, 14406, 6561, 63, 13851, 131250, 369754, 413343, 161051, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375
Offset: 0
Examples
The triangle T(n, k) starts: [0] 1; [1] 3, 3; [2] 7, 36, 25; [3] 15, 297, 625, 343; [4] 31, 2106, 10000, 14406, 6561; [5] 63, 13851, 131250, 369754, 413343, 161051; [6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809; [7] 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375;
Crossrefs
Programs
-
Maple
P := (n, x) -> add(add(x^j*binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n): T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..7);
-
Mathematica
(* From Detlef Meya, Oct 04 2023: (Start) *) T[n_, k_] := (2*k+1)^n*(2^(n+1) - Sum[Binomial[n+1, j], {j,0,k}]); (* Or: *) T[n_, k_] := (2*k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1]; Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
Formula
Sum_{k=0..n} (-1)^k*T(n, k) = 2^n*Euler(n) = 4^n*Euler(n, 1/2).
(Sum_{k=0..n} (-1)^k*T(n, k)) / 2^n = Euler(n) = 2^n*Euler(n, 1/2) = A122045(n).
Sum_{k=0..2*n} (-1)^k*T(2*n, k) = 4^n*Euler(2*n) = 16^n*Euler(2*n, 1/2) = (-1)^n*A002436(n).
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (2*k + 1)^n * binomial(n+1, k+1) * hypergeom([1, k-n], [k+2], -1).
T(n, k) = (2*k + 1)^n * (2^(n + 1) - Sum_{j=0..k} binomial(n+1, j)). (End)
Comments