A363396
a(n) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} binomial(k, j) * (2*j + 1)^n. Row sums of A363398.
Original entry on oeis.org
1, 6, 68, 1280, 33104, 1089312, 43575104, 2053324800, 111402371328, 6839846858240, 468857355838464, 35494174578769920, 2941165554120118272, 264782344216518696960, 25734702989598729256960, 2685663154208346271121408, 299529317622247725531725824, 35554080433116190335493865472
Offset: 0
-
a := n -> add(add(binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
seq(a(n), n = 0..17);
-
Table[Sum[2^(n-k) * Sum[Binomial[k, j] * (2*j+1)^n, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 02 2023 *)
A363399
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (j + 1)^n), (tangent case).
Original entry on oeis.org
1, 3, 2, 7, 16, 9, 15, 88, 135, 64, 31, 416, 1296, 1536, 625, 63, 1824, 10206, 22528, 21875, 7776, 127, 7680, 72171, 262144, 453125, 373248, 117649, 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152, 511, 128512, 3057426, 25034752, 100000000, 218350080, 265180846, 167772160, 43046721
Offset: 0
The triangle T(n, k) begins:
[0] 1;
[1] 3, 2;
[2] 7, 16, 9;
[3] 15, 88, 135, 64;
[4] 31, 416, 1296, 1536, 625;
[5] 63, 1824, 10206, 22528, 21875, 7776;
[6] 127, 7680, 72171, 262144, 453125, 373248, 117649;
[7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
-
P := (n, x) -> add(add(x^j*binomial(k, j)*(j + 1)^n, j=0..k)*2^(n - k), k = 0..n):
T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..8);
-
(* From Detlef Meya, Oct 04 2023: (Start) *)
T[n_, k_] := (k+1)^n*(2^(n+1)-Sum[Binomial[n+1, j], {j, 0, k}]);
(* Or *)
T[n_, k_] := (k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
A363400
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * ((2 - (n mod 2)) * j + 1)^n).
Original entry on oeis.org
1, 3, 2, 7, 36, 25, 15, 88, 135, 64, 31, 2106, 10000, 14406, 6561, 63, 1824, 10206, 22528, 21875, 7776, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 3, 2;
[2] 7, 36, 25;
[3] 15, 88, 135, 64;
[4] 31, 2106, 10000, 14406, 6561;
[5] 63, 1824, 10206, 22528, 21875, 7776;
[6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809;
[7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
-
P := (n, x) -> add(add(x^j * binomial(k, j) * ((2 - irem(n, 2)) * j + 1)^n,
j = 0..k) * 2^(n - k), k = 0..n): T := (n, k) -> coeff(P(n, x), x, k):
seq(seq(T(n, k), k = 0..n), n = 0..8);
-
From Detlef Meya, Oct 04 2023: (Start)
T[n_, k_] := (2^(n+1)-Binomial[n+1, n-k+1]*Hypergeometric2F1[1, -k, n-k+2, -1])*(2*k+1-k*Mod[n, 2])^n;
(* Or: *)
T[n_, k_] := (2*k+1-k*Mod[n, 2])^(n-1)*Sum[Binomial[n+1, j], {j, 0, n-k}]*(2*k+1-k*Mod[n, 2]);
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
Showing 1-3 of 3 results.
Comments