A363397
a(n) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} binomial(k, j) * (j + 1)^n. Row sums of A363399.
Original entry on oeis.org
1, 5, 32, 302, 3904, 64272, 1286144, 30313712, 822571008, 25258008320, 865863532544, 32779942009344, 1358320701014016, 61149815860711424, 2971951570679234560, 155090406558662064128, 8649258967534890123264, 513370937392454603833344
Offset: 0
-
a := n -> add(add(binomial(k, j)*(j + 1)^n, j=0..k)*2^(n - k), k = 0..n):
seq(a(n), n = 0..17);
-
Table[Sum[2^(n-k) * Sum[Binomial[k, j] * (j+1)^n, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 02 2023 *)
A363398
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (2*j + 1)^n), (secant case).
Original entry on oeis.org
1, 3, 3, 7, 36, 25, 15, 297, 625, 343, 31, 2106, 10000, 14406, 6561, 63, 13851, 131250, 369754, 413343, 161051, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375
Offset: 0
The triangle T(n, k) starts:
[0] 1;
[1] 3, 3;
[2] 7, 36, 25;
[3] 15, 297, 625, 343;
[4] 31, 2106, 10000, 14406, 6561;
[5] 63, 13851, 131250, 369754, 413343, 161051;
[6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809;
[7] 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375;
-
P := (n, x) -> add(add(x^j*binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..7);
-
(* From Detlef Meya, Oct 04 2023: (Start) *)
T[n_, k_] := (2*k+1)^n*(2^(n+1) - Sum[Binomial[n+1, j], {j,0,k}]);
(* Or: *)
T[n_, k_] := (2*k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
A363400
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * ((2 - (n mod 2)) * j + 1)^n).
Original entry on oeis.org
1, 3, 2, 7, 36, 25, 15, 88, 135, 64, 31, 2106, 10000, 14406, 6561, 63, 1824, 10206, 22528, 21875, 7776, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 3, 2;
[2] 7, 36, 25;
[3] 15, 88, 135, 64;
[4] 31, 2106, 10000, 14406, 6561;
[5] 63, 1824, 10206, 22528, 21875, 7776;
[6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809;
[7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
-
P := (n, x) -> add(add(x^j * binomial(k, j) * ((2 - irem(n, 2)) * j + 1)^n,
j = 0..k) * 2^(n - k), k = 0..n): T := (n, k) -> coeff(P(n, x), x, k):
seq(seq(T(n, k), k = 0..n), n = 0..8);
-
From Detlef Meya, Oct 04 2023: (Start)
T[n_, k_] := (2^(n+1)-Binomial[n+1, n-k+1]*Hypergeometric2F1[1, -k, n-k+2, -1])*(2*k+1-k*Mod[n, 2])^n;
(* Or: *)
T[n_, k_] := (2*k+1-k*Mod[n, 2])^(n-1)*Sum[Binomial[n+1, j], {j, 0, n-k}]*(2*k+1-k*Mod[n, 2]);
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
Showing 1-3 of 3 results.
Comments