A363401
a(n) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} binomial(k, j) * ((2 - (n mod 2)) * j + 1)^n. Row sums of A363400.
Original entry on oeis.org
1, 5, 68, 302, 33104, 64272, 43575104, 30313712, 111402371328, 25258008320, 468857355838464, 32779942009344, 2941165554120118272, 61149815860711424, 25734702989598729256960, 155090406558662064128, 299529317622247725531725824, 513370937392454603833344
Offset: 0
-
a := n -> add(add(binomial(k, j) * ((2 - irem(n, 2)) * j + 1)^n, j = 0..k) * 2^(n - k), k = 0..n): seq(a(n), n = 0..17);
-
Table[Sum[2^(n-k) * Sum[Binomial[k, j]*((2 - Mod[n,2])*j + 1)^n, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 02 2023 *)
A363398
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (2*j + 1)^n), (secant case).
Original entry on oeis.org
1, 3, 3, 7, 36, 25, 15, 297, 625, 343, 31, 2106, 10000, 14406, 6561, 63, 13851, 131250, 369754, 413343, 161051, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375
Offset: 0
The triangle T(n, k) starts:
[0] 1;
[1] 3, 3;
[2] 7, 36, 25;
[3] 15, 297, 625, 343;
[4] 31, 2106, 10000, 14406, 6561;
[5] 63, 13851, 131250, 369754, 413343, 161051;
[6] 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809;
[7] 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375;
-
P := (n, x) -> add(add(x^j*binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..7);
-
(* From Detlef Meya, Oct 04 2023: (Start) *)
T[n_, k_] := (2*k+1)^n*(2^(n+1) - Sum[Binomial[n+1, j], {j,0,k}]);
(* Or: *)
T[n_, k_] := (2*k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
A363399
Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (j + 1)^n), (tangent case).
Original entry on oeis.org
1, 3, 2, 7, 16, 9, 15, 88, 135, 64, 31, 416, 1296, 1536, 625, 63, 1824, 10206, 22528, 21875, 7776, 127, 7680, 72171, 262144, 453125, 373248, 117649, 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152, 511, 128512, 3057426, 25034752, 100000000, 218350080, 265180846, 167772160, 43046721
Offset: 0
The triangle T(n, k) begins:
[0] 1;
[1] 3, 2;
[2] 7, 16, 9;
[3] 15, 88, 135, 64;
[4] 31, 416, 1296, 1536, 625;
[5] 63, 1824, 10206, 22528, 21875, 7776;
[6] 127, 7680, 72171, 262144, 453125, 373248, 117649;
[7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
-
P := (n, x) -> add(add(x^j*binomial(k, j)*(j + 1)^n, j=0..k)*2^(n - k), k = 0..n):
T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..8);
-
(* From Detlef Meya, Oct 04 2023: (Start) *)
T[n_, k_] := (k+1)^n*(2^(n+1)-Sum[Binomial[n+1, j], {j, 0, k}]);
(* Or *)
T[n_, k_] := (k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
Showing 1-3 of 3 results.
Comments