cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141480 a(n) = binomial(n+2,3)*5^3.

Original entry on oeis.org

125, 500, 1250, 2500, 4375, 7000, 10500, 15000, 20625, 27500, 35750, 45500, 56875, 70000, 85000, 102000, 121125, 142500, 166250, 192500, 221375, 253000, 287500, 325000, 365625, 409500, 456750, 507500, 561875, 620000, 682000, 748000, 818125, 892500, 971250, 1054500
Offset: 1

Views

Author

Zerinvary Lajos, Aug 09 2008

Keywords

Programs

  • Maple
    seq(binomial(n+2,3)*5^3, n=1..44);
  • Mathematica
    With[{c=5^3},c*Binomial[Range[40]+2,3]] (* Harvey P. Dale, Oct 20 2012 *)
    LinearRecurrence[ {4,-6,4,-1},{125,500,1250,2500},40] (* Harvey P. Dale, Oct 20 2012 *)

Formula

G.f.: 125*x / (1-x)^4.
a(n) = C(n+2,3)*5^3, n>=1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=125, a(2)=500, a(3)=1250, a(4)=2500. - Harvey P. Dale, Oct 20 2012
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/250.
Sum_{n>=1} (-1)^(n+1)/a(n) = 12*log(2)/125 - 3/50. (End)

Extensions

Offset corrected by Harvey P. Dale, Oct 20 2012