cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141575 A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].

Original entry on oeis.org

1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
Offset: 1

Views

Author

Roger L. Bagula, Aug 18 2008

Keywords

Comments

General Lucas-like Binet sequences
where Prime[m]starts at 1:
a(n)=((Prime[n]+gap[n]*Sqrt[Prime[m])^n+(Prime[n]-gap[n]*Sqrt[Prime[m])^n)/2.
Row sums are:
{1, 4, 51, 1160, 119205, 2694186, 583504495, 12222749556, 4868938911913,
3621654266405174, 21636046625243691}

Examples

			{1},
{2, 2},
{13, 17, 21},
{185, 245, 305, 425},
{7361, 12833, 18817, 32321, 47873},
{215171, 271051, 328691, 449251, 576851, 853171},
{12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281},
{532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797},
{40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801},
{7312866926183, 15217609281335, 25813998655559, 56317915837223,
101380456546055, 246072307427783, 351480840333479, 643872497781095,
837435900955463, 1336749872660999}, {512759709537725, 608866569299409,
709085196658213, 922088454409101, 1152233212894709, 1665820807145925,
1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213,
4951533162173037}
		

Crossrefs

Programs

  • Mathematica
    gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].