A141575 A gap prime-type triangular sequence of coefficients: gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
1, 2, 2, 13, 17, 21, 185, 245, 305, 425, 7361, 12833, 18817, 32321, 47873, 215171, 271051, 328691, 449251, 576851, 853171, 12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281, 532365557, 659940697, 793109789, 1076412613
Offset: 1
Examples
{1}, {2, 2}, {13, 17, 21}, {185, 245, 305, 425}, {7361, 12833, 18817, 32321, 47873}, {215171, 271051, 328691, 449251, 576851, 853171}, {12334505, 21164697, 31341961, 55836009, 86013257, 164203785, 212610281}, {532365557, 659940697, 793109789, 1076412613, 1382639597, 2065328317, 2442521189, 3270431797}, {40436937953, 68810349217, 102354570337, 185966400481, 293310073697, 587469359713, 778486092257, 1259085279457, 1553019848801}, {7312866926183, 15217609281335, 25813998655559, 56317915837223, 101380456546055, 246072307427783, 351480840333479, 643872497781095, 837435900955463, 1336749872660999}, {512759709537725, 608866569299409, 709085196658213, 922088454409101, 1152233212894709, 1665820807145925, 1950209769575213, 2576571400365309, 2919512658836837, 3667365684348213, 4951533162173037}
Programs
-
Mathematica
gap[n_] := Prime[n + 1] - Prime[n]; t[n_, m_] := If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]]; Table[Table[FullSimplify[t[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
gap(n)=Prime[n+1]-Prime[n]; t(n,m)=If[n == m == 0, 1, If[m == 0, ((Prime[n] + gap[n])^ n + (Prime[n] - gap[n])^n)/2, ((Prime[n] + gap[n]*Sqrt[Prime[m]])^n + (Prime[n] - gap[n]*Sqrt[Prime[m]])^n)/2]].
Comments