A141595 Binomial transform of A120070.
3, 11, 24, 57, 137, 310, 672, 1445, 3135, 6834, 14797, 31605, 66642, 139500, 291697, 611517, 1285388, 2702278, 5664348, 11813505, 24503911, 50606865, 104273395, 214794252, 442965900, 914940122, 1891691613, 3910617099, 8072908510, 16626013425, 34146007356, 69946108176
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A120070.
Programs
-
Magma
A120070:= [n^2-k^2: k in [1..n-1], n in [2..100]]; A141595:= func< n | (&+[Binomial(n,k)*A120070[k+1]: k in [0..n]]) >; [A141595(n): n in [0..40]]; // G. C. Greubel, Sep 15 2024
-
Mathematica
A120070= Table[n^2 - k^2, {n,2,100}, {k,n-1}]//Flatten; A141595[n_]:= Sum[Binomial[n, k]*A120070[[k+1]], {k,0,n}]; Table[A141595[n], {n,0,40}] (* G. C. Greubel, Sep 15 2024 *)
-
SageMath
A120070=flatten([[n^2 -k^2 for k in range(1,n)] for n in range(2,101)]) def A141595(n): return sum(binomial(n,k)*A120070[k] for k in range(n+1)) [A141595(n) for n in range(41)] # G. C. Greubel, Sep 15 2024
Formula
a(n) = Sum_{k=0..n} binomial(n,k)*A120070(k). - G. C. Greubel, Sep 15 2024
Extensions
Terms a(8) onward added by G. C. Greubel, Sep 15 2024