cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141597 Triangle T(n,k) = 2*binomial(n,k)^2 - 1, read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 17, 17, 1, 1, 31, 71, 31, 1, 1, 49, 199, 199, 49, 1, 1, 71, 449, 799, 449, 71, 1, 1, 97, 881, 2449, 2449, 881, 97, 1, 1, 127, 1567, 6271, 9799, 6271, 1567, 127, 1, 1, 161, 2591, 14111, 31751, 31751, 14111, 2591, 161, 1, 1, 199, 4049, 28799, 88199, 127007, 88199, 28799, 4049, 199, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 21 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   7,    1;
  1,  17,   17,     1;
  1,  31,   71,    31,     1;
  1,  49,  199,   199,    49,      1;
  1,  71,  449,   799,   449,     71,     1;
  1,  97,  881,  2449,  2449,    881,    97,     1;
  1, 127, 1567,  6271,  9799,   6271,  1567,   127,    1;
  1, 161, 2591, 14111, 31751,  31751, 14111,  2591,  161,   1;
  1, 199, 4049, 28799, 88199, 127007, 88199, 28799, 4049, 199,  1;
		

Crossrefs

Cf. A134759 (row sums), A141596.

Programs

  • Magma
    A141597:= func< n,k | 2*Binomial(n,k)^2 - 1 >;
    [A141597(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
    
  • Mathematica
    T[n_, m_, k_, l_]:= (1+l)*Binomial[n, m]^k -l;
    Table[T[n,m,2,1], {n,0,12}, {m,0,n}]//Flatten
  • SageMath
    def A141597(n,k): return 2*binomial(n,k)^2 -1
    flatten([[A141597(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024

Formula

Sum_{k=0..n} T(n, k) = A134759(n) = 2*binomial(2*n,n) - (n+1) (row sums).
T(n, n-k) = T(n, k).
Sum_{k=0..n} (-1)^k*T(n, k) = ((1+(-1)^n)/2)*(2*(-1)^(n/2)*binomial(n, n/2) - 1) (alternating sign row sums). - G. C. Greubel, Sep 15 2024
Showing 1-1 of 1 results.