cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141605 Triangle read by rows: T(n, k) = A006722(n)/(A006722(k)*A006722(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 2, 5, 5, 5, 5, 2, 1, 1, 2, 3, 9, 9, 9, 3, 2, 1, 1, 3, 5, 8, 23, 23, 8, 5, 3, 1, 1, 3, 8, 15, 25, 75, 25, 15, 8, 3, 1, 1, 6, 18, 47, 84, 140, 140, 84, 47, 18, 6, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 21 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,  1;
  1,  1,  1,  1;
  1,  1,  1,  1,  1;
  1,  1,  1,  1,  1,  1;
  1,  3,  3,  3,  3,  3,  1;
  1,  2,  5,  5,  5,  5,  2,  1;
  1,  2,  3,  9,  9,  9,  3,  2,  1;
  1,  3,  5,  8, 23, 23,  8,  5,  3,  1;
  1,  3,  8, 15, 25, 75, 25, 15,  8,  3,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A006722:= [n le 6 select 1 else (Self(n-1)*Self(n-5) + Self(n-2)*Self(n-4) + Self(n-3)^2)/Self(n-6): n in [1..30]];
    A141605:= func< n, k | Round(A006722[n+1]/(A006722[k+1]*A006722[n-k+1])) >;
    [A141605(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 21 2024
    
  • Mathematica
    f[n_]:= f[n]= If[n<6, 1, (f[n-1]*f[n-5] +f[n-2]*f[n-4] +f[n-3]^2)/f[n-6]] (*A006722*)
    A141605[n_, k_]:= Round[f[n]/(f[k]*f[n-k])];
    Table[A141605[n, k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def f(n): # f = A006722
        if n<6: return 1
        else: return (f(n-1)*f(n-5) +f(n-2)*f(n-4) +f(n-3)^2)/f(n-6)
    def A141605(n, k): return round(f(n)/(f(k)*f(n-k)))
    flatten([[A141605(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 21 2024

Formula

T(n, k) = A006722(n)/(A006722(n-k)*A006722(m)).

Extensions

Edited and new name by G. C. Greubel, Sep 21 2024
Showing 1-1 of 1 results.