A141618 Triangle read by rows: number of nilpotent partial transformations (of an n-element set) of height r (height(alpha) = |Im(alpha)|), 0 <= r < n.
1, 1, 2, 1, 9, 6, 1, 28, 72, 24, 1, 75, 500, 600, 120, 1, 186, 2700, 7800, 5400, 720, 1, 441, 12642, 73500, 117600, 52920, 5040, 1, 1016, 54096, 571536, 1764000, 1787520, 564480, 40320, 1, 2295, 217800, 3916080, 21019824, 40007520, 27941760, 6531840, 362880, 1, 5110, 839700, 24555600, 214326000
Offset: 1
Examples
N(J(4,2)) = 6*6*2 = 72. From _Peter Bala_, Oct 22 2008: (Start) Triangle begins n\k|..0.....1.....2.....3.....4....5 ===================================== .1.|..1 .2.|..1.....2 .3.|..1.....9.....6 .4.|..1....28....72....24 .5.|..1....75...500...600...120 .6.|..1...186..2700..7800..5400...720 ... (End)
Links
- A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Comm. Algebra 32 (2004), 3017-3023.
- A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Tech. Report TR305, King Fahd Univ. of Petroleum and Minerals, (2003).
- Wikipedia, Cumulant
Programs
-
Maple
A048993 := proc(n,k) combinat[stirling2](n,k) ; end proc: A141618 := proc(n,k) binomial(n,k)*k!*A048993(n,k+1) ; end proc:
-
Mathematica
Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]/(1 + t*x),{x,0,9}]],x]*Table[n!, {n,0,9}],t]] (* Peter Luschny, Oct 24 2015, after Peter Bala *)
-
PARI
A055302(n,k)=n!/k!*stirling(n-1, n-k,2); T(n,k)=A055302(n+1,n+1-k) / (n+1); for(n=1,10,for(k=1,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Oct 27 2014
Formula
N(J(n,r)) = C(n,r)*S(n,r+1)*r! where S(n, r + 1) is a Stirling number of the second kind (given by A048993 with zeros removed); generating function = (x+1)^(n-1).
From Peter Bala, Oct 22 2008: (Start)
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let f(x) = 1 + a*x + a*x^2/2! + a*x^3/3! + ... . Then the e.g.f. for this table is I(f(x)) = 1 + a*x +(a + 2*a^2)*x^2/2! + (a + 9*a^2 + 6*a^3)*x^3/3! + (a + 28*a^2 + 72*a^3 + 24*a^4)*x^4/4! + ... . Note, if we take f(x) = 1 + a*x + a*x^2 + a*x^3 + ... then I(f(x)) is the o.g.f. of the Narayana triangle A001263. (End)
A generator for this array is given by the inverse, g(x,t), of f(x,t)= x/(1 + t * (e^x-1)). Then A248927 gives h(x,t)= x / f(x,t) = 1 + t*(e^x-1)= 1 + t * (x + x^2/2! + x^3/3! + ...) and g(x,t)= x * (1 + t * x + (t + 2 t^2) * x^2/2! + (t + 9 t^2 + 6 t^3) * x^3/3! + ...), so by Bala's arguments A248927 is a refinement of A141618 with row sums A000272. The connection to Narayana numbers is reflected in the relation between A248927 and A134264. See A145271 for more relations that g(x,t) and f(x,t) must satisfy. - Tom Copeland, Oct 17 2014
T(n,k) = C(n,k-1) * A028246(n,k) = C(n,k-1) * A019538(n,k)/k = A055302(n+1,n+1-k) / (n+1). - Tom Copeland, Oct 25 2014
E.g.f. is the series reversion of log(1 + x)/(1 + t*x) with respect to x. Cf. A198204. - Peter Bala, Oct 21 2015
Extensions
More terms from Joerg Arndt, Oct 27 2014
Comments