cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141618 Triangle read by rows: number of nilpotent partial transformations (of an n-element set) of height r (height(alpha) = |Im(alpha)|), 0 <= r < n.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 28, 72, 24, 1, 75, 500, 600, 120, 1, 186, 2700, 7800, 5400, 720, 1, 441, 12642, 73500, 117600, 52920, 5040, 1, 1016, 54096, 571536, 1764000, 1787520, 564480, 40320, 1, 2295, 217800, 3916080, 21019824, 40007520, 27941760, 6531840, 362880, 1, 5110, 839700, 24555600, 214326000
Offset: 1

Views

Author

Abdullahi Umar, Aug 23 2008

Keywords

Comments

The sum of each row of the sequence (as a triangular array) is A000272. Second left-downward diagonal is A058877.
From Tom Copeland, Oct 26 2014: (Start)
With T(x,t) the e.g.f. for A055302 for the number of labeled rooted trees with n nodes and k leaves, the mirror of the row polynomials of this array are given by e^T(x,t) = exp[ t * x + (2t) * x^2/2! + (6t + 3t^2) * x^3/3! + ...] = 1 + t * x + (2t + t^2) * x^2/2! + (6t + 9t^2 + t^3) * x^3/3! + ... = 1 + Nr(x,t).
Equivalently, e^x-1 = Nr[Tinv(x,t),t] = t * N[t*Tinv(x,t),1/t], where N(x,t) is the e.g.f. of this array and Tinv(x,t) is the comp. inverse in x of T(x,t). Note that Nr(x,t) = t * N(x*t,1/t), and N(x,t) = t * Nr(x*t,1/t). Also, log[1 + Nr(x,t)]= x * [t + Nr(x,t)] = T(x,t).
E.g.f. is N(x,t)= t * {exp[T(x*t,1/t)] - 1}, and log[1 + N(x,t)/t] = T(x*t,1/t) = x + (2t) * x^2/2! + (3t + 6t^2) * x^3/3! + (4t + 36t^2 + 24t^3) * x^4/4! + ... = x + (t) * x^2 + (t + 2t^2) * x^3/2! + (t + 9t^2 + 6t^3) * x^4/3! + ... is the comp. inverse in x of x / [1 + t * (e^x - 1)].
The exp/log transforms (A036040/A127671) generally give associations between enumerations of sets of connected graphs/objects (in this case, trees) and sets of disconnected (or not necessarily connected) graphs/objects (in this case, bipartite graphs of the nilpotent transformations). The transforms also relate formal cumulants and moments so that Nr(x,t) is then the e.g.f. for the formal moments associated to the formal cumulants whose e.g.f. is T(x,t). (End)
T(n,k) is the number of parking functions of length n containing exactly k+1 distinct values in its image. - Alan Kappler, Jun 08 2024

Examples

			N(J(4,2)) = 6*6*2 = 72.
From _Peter Bala_, Oct 22 2008: (Start)
Triangle begins
n\k|..0.....1.....2.....3.....4....5
=====================================
.1.|..1
.2.|..1.....2
.3.|..1.....9.....6
.4.|..1....28....72....24
.5.|..1....75...500...600...120
.6.|..1...186..2700..7800..5400...720
...
(End)
		

Crossrefs

Programs

  • Maple
    A048993 := proc(n,k)
        combinat[stirling2](n,k) ;
    end proc:
    A141618 := proc(n,k)
        binomial(n,k)*k!*A048993(n,k+1) ;
    end proc:
  • Mathematica
    Flatten[CoefficientList[CoefficientList[InverseSeries[Series[Log[1 + x]/(1 + t*x),{x,0,9}]],x]*Table[n!, {n,0,9}],t]] (* Peter Luschny, Oct 24 2015, after Peter Bala *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    T(n,k)=A055302(n+1,n+1-k) / (n+1);
    for(n=1,10,for(k=1,n,print1(T(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

N(J(n,r)) = C(n,r)*S(n,r+1)*r! where S(n, r + 1) is a Stirling number of the second kind (given by A048993 with zeros removed); generating function = (x+1)^(n-1).
From Peter Bala, Oct 22 2008: (Start)
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let f(x) = 1 + a*x + a*x^2/2! + a*x^3/3! + ... . Then the e.g.f. for this table is I(f(x)) = 1 + a*x +(a + 2*a^2)*x^2/2! + (a + 9*a^2 + 6*a^3)*x^3/3! + (a + 28*a^2 + 72*a^3 + 24*a^4)*x^4/4! + ... . Note, if we take f(x) = 1 + a*x + a*x^2 + a*x^3 + ... then I(f(x)) is the o.g.f. of the Narayana triangle A001263. (End)
A generator for this array is given by the inverse, g(x,t), of f(x,t)= x/(1 + t * (e^x-1)). Then A248927 gives h(x,t)= x / f(x,t) = 1 + t*(e^x-1)= 1 + t * (x + x^2/2! + x^3/3! + ...) and g(x,t)= x * (1 + t * x + (t + 2 t^2) * x^2/2! + (t + 9 t^2 + 6 t^3) * x^3/3! + ...), so by Bala's arguments A248927 is a refinement of A141618 with row sums A000272. The connection to Narayana numbers is reflected in the relation between A248927 and A134264. See A145271 for more relations that g(x,t) and f(x,t) must satisfy. - Tom Copeland, Oct 17 2014
T(n,k) = C(n,k-1) * A028246(n,k) = C(n,k-1) * A019538(n,k)/k = A055302(n+1,n+1-k) / (n+1). - Tom Copeland, Oct 25 2014
E.g.f. is the series reversion of log(1 + x)/(1 + t*x) with respect to x. Cf. A198204. - Peter Bala, Oct 21 2015

Extensions

More terms from Joerg Arndt, Oct 27 2014