A141621 Numbers that begin a run of 5 consecutive integers of the form p^2*q where p and q are distinct primes.
10093613546512321, 14414905793929921, 266667848769941521, 562672865058083521, 1579571757660876721, 1841337567664174321, 2737837351207392721, 4456162869973433521, 4683238426747860721, 4993613853242910721, 5037980611623036721, 5174116847290255921
Offset: 1
Examples
a(1) = 10093613546512321, because 10093613546512321 = 7^2 * 205992113194129, 10093613546512322 = 2 * 71040881^2, 10093613546512323 = 3^2 * 1121512616279147, 10093613546512324 = 2^2 * 2523403386628081, and 10093613546512325 = 5^2 * 403744541860493, so each of the five consecutive integers is of the form p^2*q, and no smaller run of five consecutive integers has this property. [corrected by _Jon E. Schoenfield_, Jun 05 2018]
Links
- Ray Chandler, Table of n, a(n) for n = 1..2000 (first 25 terms from Ivan Neretin, through 200 terms from Jon E. Schoenfield)
- Richard I. Hess, Problem 1231, Crux Mathematicorum, Vol. 13, No. 4, p. 118, 1987. (takes a long time to download)
- Richard I. Hess, Puzzles from Around the World, p. 63, H17.
- Carlos Rivera, Problem 20.- Divisors (II) K consecutive numbers with the same number of divisors, The Prime Puzzles & Problems Connection.
- StackExchange, Sequence of numbers with prime factorization pq^2
- wu :: forums, Same Number of Divisors, Oct 05 2007.
- Index to sequences related to prime signature
Programs
-
Sage
## Warning: this program appears to be incorrect [Joerg Arndt, Feb 29 2016] for m in range(5000): p = 22050*m+17831 if is_prime(p): n = 2*p^2-2 n4 = n/4+1 if is_prime(n4): n49 = floor((n+1)/49) if (49*n49 == n+1) and is_prime(n49): n9 = floor((n+3)/9) if (9*n9 == n+3) and is_prime(n9): n25 = floor((n+5)/25) if (25*n25 == n+5) and is_prime(n25): print(n+1, n49, p, n9, n4, n25)
Extensions
Two more terms Matthijs Coster, Aug 28 2008
Missing terms added and extended by Ivan Neretin, Feb 08 2016
New name from Jon E. Schoenfield, Jun 05 2018
Comments