cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A142474 1 followed by A141015.

Original entry on oeis.org

1, 0, 1, 2, 4, 9, 19, 41, 88, 189, 406, 872, 1873, 4023, 8641, 18560, 39865, 85626, 183916, 395033, 848491, 1822473, 3914488, 8407925, 18059374, 38789712, 83316385, 178955183, 384377665, 825604416, 1773314929, 3808901426, 8181135700, 17572253481, 37743426307
Offset: 1

Views

Author

Roger L. Bagula, Sep 21 2008

Keywords

Comments

Essentially the same as A078039, A141015, and A141683.

Crossrefs

Programs

  • Magma
    [n le 3 select (1-(-1)^n)/2 else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Apr 14 2021
    
  • Maple
    m:=50; S:=series( x*(1-x-x^2)/(1-x-2*x^2-x^3), x, m+1):
    seq(coeff(S, x, j), j=1..m); # G. C. Greubel, Apr 14 2021
  • Mathematica
    m:= 80; Table[SeriesCoefficient[Series[(1+t)/(1+t+t^3), {t,0,m}], n], {n,0,m,2}]
  • PARI
    Vec(x*(1-x-x^2)/(1-x-2*x^2-x^3) + O(x^50)) \\ Colin Barker, Jun 29 2017
    
  • Sage
    def A142474_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x-x^2)/(1-x-2*x^2-x^3) ).list()
    a=A142474_list(51); a[1:] # G. C. Greubel, Apr 14 2021

Formula

From Colin Barker, Jun 29 2017: (Start)
G.f.: x*(1 - x - x^2) / (1 - x - 2*x^2 - x^3).
a(n) = a(n-1) + 2*a(n-2) + a(n-3) for n>3.
(End)

Extensions

More terms from G. C. Greubel, Jun 26 2017
Showing 1-1 of 1 results.