A141688 Triangle T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1, read by rows.
1, 1, 1, 1, 6, 1, 1, 26, 26, 1, 1, 99, 416, 99, 1, 1, 352, 5407, 5407, 352, 1, 1, 1200, 62616, 227094, 62616, 1200, 1, 1, 3977, 673728, 8212854, 8212854, 673728, 3977, 1, 1, 12918, 6889153, 269486766, 903413940, 269486766, 6889153, 12918, 1, 1, 41338, 67863290, 8256432767, 88493861004, 88493861004, 8256432767, 67863290, 41338, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 6, 1; 1, 26, 26, 1; 1, 99, 416, 99, 1; 1, 352, 5407, 5407, 352, 1; 1, 1200, 62616, 227094, 62616, 1200, 1; 1, 3977, 673728, 8212854, 8212854, 673728, 3977, 1; 1, 12918, 6889153, 269486766, 903413940,269486766, 6889153, 12918, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
function T(n,k) if k eq 1 or k eq n then return 1; else return Fibonacci(2*(n-k+1))*T(n-1, k-1) + Fibonacci(2*k)*T(n-1, k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 29 2021
-
Mathematica
(* First program *) b[n_]:= b[n]= If[n==0, 1, Sum[k*b[n-k], {k,n}]]; T[n_, k_]:= If[k==1 || k==n, 1, b[n-k+1]*T[n-1, k-1] + b[k]*T[n-1, k]]; Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 29 2021 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, Fibonacci[2*(n-k+1)]*T[n-1, k-1] + Fibonacci[2*k]*T[n-1, k]]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 29 2021 *)
-
Sage
@CachedFunction def T(n,k): return 1 if (k==1 or k==n) else fibonacci(2*(n-k+1))*T(n-1, k-1) + fibonacci(2*k)*T(n-1, k) flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 29 2021
Formula
Let A088305(n) be defined by b(n) = Sum_{j=1..n} j*b(n-j), with b(0)=1, then T(n, k) = b(n-k+1)*T(n-1, k-1) + b(k)*T(n-1, k) with T(n,1) = T(n,n) = 1.
From G. C. Greubel, Mar 29 2021: (Start)
T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1.
T(n, 2) = A186314(n+1). (End)
Extensions
Edited by G. C. Greubel, Mar 29 2021
Comments