cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141688 Triangle T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 26, 26, 1, 1, 99, 416, 99, 1, 1, 352, 5407, 5407, 352, 1, 1, 1200, 62616, 227094, 62616, 1200, 1, 1, 3977, 673728, 8212854, 8212854, 673728, 3977, 1, 1, 12918, 6889153, 269486766, 903413940, 269486766, 6889153, 12918, 1, 1, 41338, 67863290, 8256432767, 88493861004, 88493861004, 8256432767, 67863290, 41338, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 09 2008

Keywords

Comments

Row sums are: {1, 2, 8, 54, 616, 11520, 354728, 17781120, 1456191616, 193636396800, ...}.

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     6,       1;
  1,    26,      26,         1;
  1,    99,     416,        99,         1;
  1,   352,    5407,      5407,       352,        1;
  1,  1200,   62616,    227094,     62616,     1200,       1;
  1,  3977,  673728,   8212854,   8212854,   673728,    3977,     1;
  1, 12918, 6889153, 269486766, 903413940,269486766, 6889153, 12918, 1;
		

Crossrefs

Programs

  • Magma
    function T(n,k)
      if k eq 1 or k eq n then return 1;
      else return Fibonacci(2*(n-k+1))*T(n-1, k-1) + Fibonacci(2*k)*T(n-1, k);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 29 2021
    
  • Mathematica
    (* First program *)
    b[n_]:= b[n]= If[n==0, 1, Sum[k*b[n-k], {k,n}]];
    T[n_, k_]:= If[k==1 || k==n, 1, b[n-k+1]*T[n-1, k-1] + b[k]*T[n-1, k]];
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 29 2021 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==1 || k==n, 1, Fibonacci[2*(n-k+1)]*T[n-1, k-1] + Fibonacci[2*k]*T[n-1, k]];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 29 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): return 1 if (k==1 or k==n) else fibonacci(2*(n-k+1))*T(n-1, k-1) + fibonacci(2*k)*T(n-1, k)
    flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 29 2021

Formula

Let A088305(n) be defined by b(n) = Sum_{j=1..n} j*b(n-j), with b(0)=1, then T(n, k) = b(n-k+1)*T(n-1, k-1) + b(k)*T(n-1, k) with T(n,1) = T(n,n) = 1.
From G. C. Greubel, Mar 29 2021: (Start)
T(n, k) = Fibonacci(2*k)*T(n-1, k) + Fibonacci(2*(n-k+1))*T(n-1, k-1), with T(n, 1) = T(n, n) = 1.
T(n, 2) = A186314(n+1). (End)

Extensions

Edited by G. C. Greubel, Mar 29 2021