cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141690 Triangle t(n,m) = 2*A008292(n+1,m+1) - A007318(n,m), a linear combination of Eulerian numbers and Pascal's triangle, 0 <= m <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 126, 48, 1, 1, 109, 594, 594, 109, 1, 1, 234, 2367, 4812, 2367, 234, 1, 1, 487, 8565, 31203, 31203, 8565, 487, 1, 1, 996, 29188, 176412, 312310, 176412, 29188, 996, 1, 1, 2017, 95644, 910300, 2620582, 2620582, 910300
Offset: 0

Views

Author

Roger L. Bagula, Sep 09 2008

Keywords

Comments

Row sums are 1, 2, 8, 40, 224, 1408, 10016, 80512, 725504, 7257088, ... = 2*(n+1)! - 2^n.

Examples

			Triangle begins
  1;
  1,    1;
  1,    6,     1;
  1,   19,    19,      1;
  1,   48,   126,     48,       1;
  1,  109,   594,    594,     109,       1;
  1,  234,  2367,   4812,    2367,     234,      1;
  1,  487,  8565,  31203,   31203,    8565,    487,     1;
  1,  996, 29188, 176412,  312310,  176412,  29188,   996,    1;
  1, 2017, 95644, 910300, 2620582, 2620582, 910300, 95644, 2017, 1;
		

Crossrefs

Programs

  • Maple
    A141690 := proc(n,m)
            2*A008292(n+1,m+1)-binomial(n,m) ;
    end proc: # R. J. Mathar, Jul 12 2012
  • Mathematica
    Table[Table[(2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]), {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]