A141690 Triangle t(n,m) = 2*A008292(n+1,m+1) - A007318(n,m), a linear combination of Eulerian numbers and Pascal's triangle, 0 <= m <= n.
1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 126, 48, 1, 1, 109, 594, 594, 109, 1, 1, 234, 2367, 4812, 2367, 234, 1, 1, 487, 8565, 31203, 31203, 8565, 487, 1, 1, 996, 29188, 176412, 312310, 176412, 29188, 996, 1, 1, 2017, 95644, 910300, 2620582, 2620582, 910300
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 6, 1; 1, 19, 19, 1; 1, 48, 126, 48, 1; 1, 109, 594, 594, 109, 1; 1, 234, 2367, 4812, 2367, 234, 1; 1, 487, 8565, 31203, 31203, 8565, 487, 1; 1, 996, 29188, 176412, 312310, 176412, 29188, 996, 1; 1, 2017, 95644, 910300, 2620582, 2620582, 910300, 95644, 2017, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Maple
A141690 := proc(n,m) 2*A008292(n+1,m+1)-binomial(n,m) ; end proc: # R. J. Mathar, Jul 12 2012
-
Mathematica
Table[Table[(2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]), {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
Comments