A141707 Least k>0 such that (2n-1)k is palindromic in base 2.
1, 1, 1, 1, 1, 3, 5, 1, 1, 27, 1, 89, 13, 1, 49, 1, 1, 13, 69, 5, 25, 3, 1, 103, 29, 1, 63, 3, 9, 103, 7, 1, 1, 19, 37, 147, 1, 13, 3, 19, 11, 45, 1, 37, 23, 3, 1, 27, 61, 1, 233, 47, 13, 1, 21, 23, 59, 525, 5, 1, 93, 23, 41, 1, 1, 49, 27, 13, 187, 87, 269, 15, 111, 13, 29, 7, 1, 13, 3
Offset: 1
Examples
a(1..5)=1 since 1,3,5,7,9 are already palindromic in base 2. a(6)=3 since 2*6-1=11 and 2*11=22 are not palindromic in base 2, but 3*11=33 is.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a141707 n = head [k | k <- [1, 3 ..], a178225 (k * (2 * n - 1)) == 1] -- Reinhard Zumkeller, Apr 20 2015
-
Mathematica
lkp[n_]:=Module[{k=1,n2=2n-1},While[IntegerDigits[k*n2,2]!= Reverse[ IntegerDigits[ k*n2,2]],k++];k]; Array[lkp,80] (* Harvey P. Dale, Mar 19 2016 *)
-
PARI
A141707(n,L=10^9)={ n=2*n-1; forstep(k=1,L,2, binary(k*n)-vecextract(binary(k*n),"-1..1") || return(k))}
-
Python
def binpal(n): b = bin(n)[2:]; return b == b[::-1] def a(n): m = 2*n - 1 km = m while not binpal(km): km += m return km//m print([a(n) for n in range(1, 80)]) # Michael S. Branicky, Mar 20 2022
Comments