A141708 Least positive multiple of 2n-1 which is palindromic in base 2.
1, 3, 5, 7, 9, 33, 65, 15, 17, 513, 21, 2047, 325, 27, 1421, 31, 33, 455, 2553, 195, 1025, 129, 45, 4841, 1421, 51, 3339, 165, 513, 6077, 427, 63, 65, 1273, 2553, 10437, 73, 975, 231, 1501, 891, 3735, 85, 3219, 2047, 273, 93, 2565, 5917, 99, 23533, 4841, 1365, 107
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a141708 n = a141707 n * (2 * n - 1) -- Reinhard Zumkeller, Apr 20 2015
-
Mathematica
pal2[n_]:=Module[{k=1},While[IntegerDigits[k n,2] != Reverse[ IntegerDigits[ k n,2]],k++];k n]; pal2/@Range[1,121,2] (* Harvey P. Dale, Feb 29 2012 *)
-
PARI
A141708(n,L=10^9)={ n=2*n-1; forstep(k=1,L,2, binary(k*n)-vecextract(binary(k*n),"-1..1") || return(k*n))}
-
Python
def binpal(n): b = bin(n)[2:]; return b == b[::-1] def a(n): m = 2*n - 1 km = m while not binpal(km): km += m return km print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Mar 20 2022
Formula
a(n) = (2n-1)*A141707(n).
Comments