A141724 Triangle T(n, k) = Sum_{m=0..k} Sum_{j=0..m} Multinomial(n-k-m-j, j, m, k), read by rows.
1, 1, 1, 1, 4, 1, 1, 15, 6, 1, 1, 40, 36, 8, 1, 1, 85, 160, 60, 10, 1, 1, 156, 615, 340, 90, 12, 1, 1, 259, 2016, 1715, 595, 126, 14, 1, 1, 400, 5656, 7616, 3500, 952, 168, 16, 1, 1, 585, 13896, 30408, 18396, 6300, 1428, 216, 18, 1, 1, 820, 30645, 109320, 88620, 37044, 10500, 2040, 270, 20, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 15, 6, 1; 1, 40, 36, 8, 1; 1, 85, 160, 60, 10, 1; 1, 156, 615, 340, 90, 12, 1; 1, 259, 2016, 1715, 595, 126, 14, 1; 1, 400, 5656, 7616, 3500, 952, 168, 16, 1; 1, 585, 13896, 30408, 18396, 6300, 1428, 216, 18, 1; 1, 820, 30645, 109320, 88620, 37044, 10500, 2040, 270, 20, 1; 1, 1111, 61930, 352605, 393030, 200508, 67914, 16500, 2805, 330, 22, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Mohammad K. Azarian, A Double Sum, Problem 440, College Mathematics Journal, Vol. 21, No. 5, Nov. 1990, p. 424. Solution published in Vol. 22. No. 5, Nov. 1991, pp. 448-449.
Crossrefs
Cf. A065109.
Programs
-
Magma
F:= Factorial; [[ (&+[ (&+[ n lt k+j+m select 0 else F(n)/(F(k)*F(j)*F(n-k-j-m)*F(m)): j in [0..m]]) : m in [0..k]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 29 2021
-
Mathematica
Table[Sum[Sum[Multinomial[n-k-m-j,m,k,j], {j,0,m}], {m,0,k}], {n,0,12}, {k,0,n}]//Flatten
-
Sage
f=factorial; flatten([[sum( sum(0 if n
G. C. Greubel, Mar 29 2021
Formula
T(n, k) = Sum_{m=0..k} Sum_{j=0..m} Multinomial(n-k-m-j, j, m, k).
Extensions
Edited by G. C. Greubel, Mar 29 2021
Comments