cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139755 Table of q-derangement numbers of type A, by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 5, 7, 8, 8, 6, 4, 2, 1, 4, 9, 16, 24, 32, 37, 38, 35, 28, 20, 12, 6, 2, 1, 1, 5, 14, 30, 54, 86, 123, 160, 191, 210, 214, 202, 176, 141, 104, 69, 41, 21, 9, 3, 1, 6, 20, 50, 104, 190, 313, 473, 663, 868, 1068, 1240, 1362, 1417, 1398, 1307, 1157, 968
Offset: 1

Views

Author

Jonathan Vos Post, Jun 13 2008

Keywords

Comments

This sequence is from Table 1.1 of Chen and Wang, p. 2. Abstract: We show that the distribution of the coefficients of the q-derangement numbers is asymptotically normal. We also show that this property holds for the q-derangement numbers of type B.
Number of terms in row n appears to be A084265(n+2). - N. J. A. Sloane, Jul 20 2008
T(n,k) is the number of derangements in the set S(n) of permutations of {1,2,...,n} having major index equal to k. Example: T(4,3)=2 because we have 4312 (descent positions 1 and 2) and 2341 (descent position 3). - Emeric Deutsch, May 04 2009

Examples

			The table begins:
==============================================================================
k=...|.1.|.2.|.3.|..4.|..5.|..6.|..7.|..8.|..9.|.10.|.11.|.12.|.13.|.14.|.15.|
==============================================================================
n=2..|.1.|
n=3..|.1.|.1.|
n=4..|.1.|.2.|.2.|..2.|..1.|..1.|
n=5..|.1.|.3.|.5.|..7.|..8.|..8.|..6.|..4.|..2.|
n=6..|.1.|.4.|.9.|.16.|.24.|.32.|.37.|.38.|.35.|.28.|.20.|.12.|..6.|..2.|..1.|
===============================================================================
Number of terms in rows 2..22: [1,2,6,9,15,20,28,35,45,54,66,77,91,104,120,135,153,170,190,209,231].
From _Paul D. Hanna_, Jun 20 2009: (Start)
For row n=4, the sum over powers of I, a 4th root of unity, is:
1*I + 2*I^2 + 2*I^3 + 2*I^4 + 1*I^5 + 1*I^6 = -1. (End)
		

Crossrefs

Cf. diagonals: A141753, A141754.

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[QFactorial[n, q] Sum[(-1)^m q^(m(m-1)/2)/ QFactorial[m, q], {m, 0, n}], {q, 0, k}];
    Table[T[n, k], {n, 2, 8}, {k, 1, n(n-1)/2 - Mod[n, 2]}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    T(n,k)=if(k<1 || k>n*(n-1)/2-(n%2),0,polcoeff( prod(j=1,n,(1-q^j)/(1-q))*sum(k=0,n,(-1)^k*q^(k*(k-1)/2)/if(k==0,1,prod(j =1,k,(1-q^j)/(1-q)))),k,q)) \\ Paul D. Hanna, Jul 07 2008

Formula

From Paul D. Hanna, Jun 20 2009: (Start)
For row n>1, the sum over powers of the n-th root of unity = -1:
-1 = Sum_{k=1..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n), where I^2=-1.
(End)

Extensions

More terms from Paul D. Hanna, Jul 07 2008

A141754 Secondary diagonal of A139755, the table of q-derangement numbers of type A.

Original entry on oeis.org

1, 2, 5, 16, 54, 190, 684, 2505, 9291, 34793, 131277, 498312, 1900862, 7280732, 27983141, 107868939, 416869874, 1614609446, 6265869591, 24358231651, 94837442844, 369755864507, 1443420649734, 5641088964709, 22068939198169
Offset: 1

Views

Author

Paul D. Hanna, Jul 05 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^j)/(1-q))* sum(k=0,n+2,(-1)^k*q^(k*(k-1)/2)/if(k==0,1,prod(j=1,k,(1-q^j)/(1-q)))),n,q)}

Formula

a(n) = [q^n] { ([n+2]q)! * Sum{m=0..n+2} (-1)^m * q^(m(m-1)/2) / ([m]q)! }; here, the q-factorial of n is denoted by ([n]_q)! = Product{j=1..n} (1-q^j)/(1-q), with ([0]_q)! = 1.
a(n) ~ c * 4^n / sqrt(Pi*n), where c = 2*QPochhammer(1/2)^2 = 0.166797127727497043069083616310625... - Vaclav Kotesovec, Aug 30 2023, updated Mar 17 2024
Showing 1-2 of 2 results.