A141769 Beginning of a run of 4 consecutive Niven (or Harshad) numbers.
1, 2, 3, 4, 5, 6, 7, 510, 1014, 2022, 3030, 10307, 12102, 12255, 13110, 60398, 61215, 93040, 100302, 101310, 110175, 122415, 127533, 131052, 131053, 196447, 201102, 202110, 220335, 223167, 245725, 255045, 280824, 306015, 311232, 318800, 325600, 372112, 455422
Offset: 1
Examples
510 is in the sequence because 510, 511, 512 and 513 are all Niven numbers.
References
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Curtis Cooper and Robert E. Kennedy, On consecutive Niven numbers, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.
- Helen G. Grundman, Sequences of consecutive Niven numbers, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.
- Eric Weisstein's World of Mathematics, Harshad Number.
- Wikipedia, Harshad number.
- Brad Wilson Construction of 2n consecutive n-Niven numbers, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.
Crossrefs
Programs
-
Magma
f:=func
; a:=[]; for k in [1..500000] do if forall{m:m in [0..3]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020 -
Mathematica
nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[4]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 3]], {k, 4, 5*10^5}]; seq (* Amiram Eldar, Jan 03 2020 *)
-
PARI
{A141769_first( N=50, L=4, a=List())= for(n=1,oo, n+=L; for(m=1,L, n--%sumdigits(n) && next(2)); listput(a,n); N--|| break);a} \\ M. F. Hasler, Jan 03 2022
-
Python
from itertools import count, islice def agen(): # generator of terms h1, h2, h3, h4 = 1, 2, 3, 4 while True: if h4 - h1 == 3: yield h1 h1, h2, h3, h4, = h2, h3, h4, next(k for k in count(h4+1) if k%sum(map(int, str(k))) == 0) print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 17 2024
Formula
Extensions
More terms from Amiram Eldar, Jan 03 2020
Comments