cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141769 Beginning of a run of 4 consecutive Niven (or Harshad) numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 510, 1014, 2022, 3030, 10307, 12102, 12255, 13110, 60398, 61215, 93040, 100302, 101310, 110175, 122415, 127533, 131052, 131053, 196447, 201102, 202110, 220335, 223167, 245725, 255045, 280824, 306015, 311232, 318800, 325600, 372112, 455422
Offset: 1

Views

Author

Sergio Pimentel, Sep 15 2008

Keywords

Comments

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite. - Amiram Eldar, Jan 03 2020

Examples

			510 is in the sequence because 510, 511, 512 and 513 are all Niven numbers.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Cf. A005349, A330927, A154701, A330928, A330929, A330930, A060159 (start of run of 1, 2, ..., 7, exactly n consecutive Harshad numbers).
Cf. A330933, A328211, A328215 (analog for base 2, Zeckendorf- resp. Fibonacci-Niven variants).

Programs

  • Magma
    f:=func; a:=[]; for k in [1..500000] do  if forall{m:m in [0..3]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[4]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 3]], {k, 4, 5*10^5}]; seq (* Amiram Eldar, Jan 03 2020 *)
  • PARI
    {A141769_first( N=50, L=4, a=List())= for(n=1,oo, n+=L; for(m=1,L, n--%sumdigits(n) && next(2)); listput(a,n); N--|| break);a} \\ M. F. Hasler, Jan 03 2022
    
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        h1, h2, h3, h4 = 1, 2, 3, 4
        while True:
            if h4 - h1 == 3: yield h1
            h1, h2, h3, h4, = h2, h3, h4, next(k for k in count(h4+1) if k%sum(map(int, str(k))) == 0)
    print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 17 2024

Formula

This A141769 = { A005349(k) | A005349(k+3) = A005349(k)+3 }. - M. F. Hasler, Jan 03 2022

Extensions

More terms from Amiram Eldar, Jan 03 2020