A141799 Number of repeated integer partitions of n.
1, 3, 8, 25, 66, 192, 511, 1418, 3812, 10383, 27958, 75758, 204215, 551821, 1488561, 4018722, 10842422, 29262357, 78955472, 213063551, 574905487, 1551325859, 4185959285, 11295211039, 30478118079, 82240300045, 221911189754, 598790247900, 1615732588962
Offset: 1
Keywords
Examples
For the integers 1, 2, 3 and 4 we have [1] -> 1, thus a(1)=1. [2] -> 1, [1,1] => [1] ->, [1] -> 1. thus a(2)=3. [3] -> 1, [1,2] => [1] -> 1, [2] -> 3, [1,1,1] => [1] -> 1, [1] -> 1, [1] -> 1, thus a(3)=8. [4] -> 1, [1,3] => [1] -> 1, [3] -> 8, [2,2] => [2] -> 3, [2] -> 3, [1,1,2] => [1] -> 1, [1] -> 1, [2] -> 3, [1,1,1,1] => [1] -> 1, [1] -> 1, [1] -> 1, [1] -> 1, thus a(4)=25.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A141799 := proc(n) option remember ; local a,P,i,p ; if n =1 then 1; else a := 0 ; for P in combinat[partition](n) do if nops(P) > 1 then for i in P do a := a+procname(i) ; od: else a := a+1 ; fi; od: RETURN(a) ; fi ; end: for n from 1 to 40 do printf("%d,",A141799(n)) ; od: # R. J. Mathar, Aug 25 2008 # second Maple program a:= proc(n) option remember; 1+ `if`(n>1, b(n, n-1)[2], 0) end: b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, n] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2] +g[1]*a(i)] fi end: seq(a(n), n=1..40); # Alois P. Heinz, Apr 05 2012
-
Mathematica
a[n_] := a[n] = 1 + If[n>1, b[n, n-1][[2]], 0]; b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]*a[i]}]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
Formula
Let sum_{i=1}^P(n) denote the sum over all integer partitions P([n],i) of n. Let sum_{j=1}^T(i,j) denote the sum over all parts of the i-th integer partition. Then we have the recursive formula 1 if t(i,j)=n a(n) = sum_{i=1}^P(n) sum_{j=1}^T(i,j) { a(t(i,j)) else. E.g. a(4)=25 because [4] contributes 1, [1,3] contributes a(1)+a(3)=1+8=9, [2,2] contributes a(2)+a(2)=3+3=6, [1,1,2] contributes a(1)+a(1)+a(2)=1+1+3=5, [1,1,1,1] contributes a(1)+a(1)+a(1)+a(1)=1+1+1+1=4 which gives in total 25.
a(n) ~ c * d^n, where d = 2.69832910647421123126399866... (see A246828), c = 0.5088820425072641934222229579416714164592334575899644931509447692360546... . - Vaclav Kotesovec, Sep 04 2014
Extensions
Extended by R. J. Mathar, Aug 25 2008
Comments