A141809 Irregular table: Row n (of A001221(n) terms, for n>=2) consists of the largest powers that divides n of each distinct prime that divides n. Terms are arranged by the size of the distinct primes. Row 1 = (1).
1, 2, 3, 4, 5, 2, 3, 7, 8, 9, 2, 5, 11, 4, 3, 13, 2, 7, 3, 5, 16, 17, 2, 9, 19, 4, 5, 3, 7, 2, 11, 23, 8, 3, 25, 2, 13, 27, 4, 7, 29, 2, 3, 5, 31, 32, 3, 11, 2, 17, 5, 7, 4, 9, 37, 2, 19, 3, 13, 8, 5, 41, 2, 3, 7, 43, 4, 11, 9, 5, 2, 23, 47, 16, 3, 49, 2, 25, 3, 17, 4, 13, 53, 2, 27, 5, 11, 8, 7, 3
Offset: 1
Examples
60 has the prime factorization 2^2 * 3^1 * 5^1, so row 60 is (4,3,5). From _M. F. Hasler_, Oct 12 2018: (Start) The table starts: n : largest prime powers dividing n 1 : 1 2 : 2 3 : 3 4 : 4 5 : 5 6 : 2, 3 7 : 7 8 : 8 9 : 9 10 : 2, 5 11 : 11 12 : 4, 3 etc. (End)
Links
- Reinhard Zumkeller, Rows n=1..10000 of triangle, flattened
- Eric Weisstein's World of Mathematics, Prime Factorization
Crossrefs
Programs
-
Haskell
a141809 n k = a141809_row n !! (k-1) a141809_row 1 = [1] a141809_row n = zipWith (^) (a027748_row n) (a124010_row n) a141809_tabf = map a141809_row [1..] -- Reinhard Zumkeller, Mar 18 2012
-
Mathematica
f[{x_, y_}] := x^y; Table[Map[f, FactorInteger[n]], {n, 1, 50}] // Grid (* Geoffrey Critzer, Apr 03 2015 *)
-
PARI
A141809_row(n)=if(n>1, [f[1]^f[2]|f<-factor(n)~], [1]) \\ M. F. Hasler, Oct 12 2018, updated Aug 19 2022
Comments