cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263769 Smallest prime q such that q == -1 (mod prime(n)-1).

Original entry on oeis.org

2, 3, 3, 5, 19, 11, 31, 17, 43, 83, 29, 71, 79, 41, 137, 103, 173, 59, 131, 139, 71, 233, 163, 263, 191, 199, 101, 211, 107, 223, 251, 389, 271, 137, 443, 149, 311, 647, 331, 859, 1423, 179, 379, 191, 587, 197, 419, 443
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

a(n): A000040(1), A065091(1), A002145(1), A007528(1), A030433(1), A068231(1), A127576(1), A061242(1), A141857(1), A141976(1), A132236(1), A142111(1), A142198(1), A141898(1), A141926(1), A142531(1), A142004(1), A142799(1), A142068(1), A142099(1), ...
Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Examples

			a(4) = 5 because 5 == -1 (mod prime(4)-1) and is prime.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do
      k:= ithprime(n)-1;
      q:= 2;
      while (1 + q) mod k <> 0 do
        q:= nextprime(q)
      od;
      A[n]:= q;
    od:
    seq(A[i],i=1..1000); # Robert Israel, Oct 26 2015
  • Mathematica
    Table[q = 2; z = Prime@ n - 1; While[Mod[q, z] != z - 1, q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)

Extensions

Corrected and edited by Robert Israel, Oct 26 2015,

A161504 Primes congruent to {1, 2, 10, 11, 19, 20} mod 21.

Original entry on oeis.org

2, 11, 19, 23, 31, 41, 43, 53, 61, 73, 83, 103, 107, 127, 137, 149, 157, 167, 179, 191, 199, 211, 229, 233, 241, 251, 263, 271, 283, 293, 313, 317, 337, 347, 359, 367, 379, 389, 397, 401, 409, 419, 421, 431, 439, 443, 461, 463, 503, 523, 547, 557, 569, 577, 587
Offset: 1

Views

Author

T. D. Noe, Jun 17 2009

Keywords

Comments

The cyclotomic polynomial Phi(21p,x) is flat only for p in this sequence.

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[21*n+{-10,-2,-1,1,2,10}, PrimeQ], {n,50}]]
    Select[Prime[Range[2,250]],MemberQ[{1,2,10,11,19,20},Mod[#,21]]&] (* Harvey P. Dale, May 03 2019 *)

Formula

Extensions

a(1)=2 inserted by Georg Fischer, Jul 26 2020
Showing 1-2 of 2 results.