A141901 Triangle T(n, k) = Sum_{j=0..n-k-1} binomial(n, j+k+1) - 2^(n-k) with T(n, 0) = 1, read by rows.
1, 1, -1, 1, -1, -1, 1, 0, -1, -1, 1, 3, 1, -1, -1, 1, 10, 8, 2, -1, -1, 1, 25, 26, 14, 3, -1, -1, 1, 56, 67, 48, 21, 4, -1, -1, 1, 119, 155, 131, 77, 29, 5, -1, -1, 1, 246, 338, 318, 224, 114, 38, 6, -1, -1, 1, 501, 712, 720, 574, 354, 160, 48, 7, -1, -1
Offset: 0
Examples
Triangle begins as: 1; 1, -1; 1, -1, -1; 1, 0, -1, -1; 1, 3, 1, -1, -1; 1, 10, 8, 2, -1, -1; 1, 25, 26, 14, 3, -1, -1; 1, 56, 67, 48, 21, 4, -1, -1; 1, 119, 155, 131, 77, 29, 5, -1, -1; 1, 246, 338, 318, 224, 114, 38, 6, -1, -1; 1, 501, 712, 720, 574, 354, 160, 48, 7, -1, -1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
T:= func< n,k | k eq 0 select 1 else (&+[Binomial(n, j+k+1): j in [0..n]]) - 2^(n-k)>; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 29 2021
-
Mathematica
(* First program *) T[n_, k_]:= If[k==0, 1, Binomial[n,k+1]*Hypergeometric2F1[1, 1+k-n, 2+k, -1] - 2^(n-k)]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 29 2021 *) (* Second program *) T[n_, k_]:= If[k==0, 1, Sum[Binomial[n, j+k+1], {j, 0, n-k-1}] - 2^(n-k)]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 29 2021 *)
-
SageMath
@CachedFunction def T(n,k): if k==0: return 1 else: return sum( binomial(n, j+k+1) for j in (0..n-k-1) ) - 2^(n-k) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 29 2021
Formula
T(n, k) = binomial(n, k+1)*Hypergeometric2F1([1, 1+k-n], [2+k], -1) - 2^(n-k) with T(n, 0) = 1.
From G. C. Greubel, Mar 29 2021: (Start)
T(n, k) = Sum_{j=0..n-k-1} binomial(n, j+k+1) - 2^(n-k) with T(n, 0) = 1.
Extensions
Edited by G. C. Greubel, Mar 29 2021