A141903 A linear combination of A008292 and A130595: t(n,m)=2*A008292(n,m)- A130595(n,m).
1, 1, 3, 1, 10, 1, 1, 25, 19, 3, 1, 56, 126, 56, 1, 1, 119, 594, 614, 109, 3, 1, 246, 2367, 4852, 2367, 246, 1, 1, 501, 8565, 31273, 31203, 8607, 487, 3, 1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1, 1, 2035, 95644, 910468, 2620582, 2620834, 910300
Offset: 1
Examples
{1}, {1, 3}, {1, 10, 1}, {1, 25, 19, 3}, {1, 56, 126, 56, 1}, {1, 119, 594, 614, 109, 3}, {1, 246, 2367, 4852, 2367, 246, 1}, {1, 501, 8565, 31273, 31203, 8607, 487, 3}, {1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1}, {1, 2035, 95644, 910468, 2620582, 2620834, 910300, 95716, 2017, 3}
Programs
-
Mathematica
A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k]; Table[Table[2*A[n, k] - (-1)^(k + 1)*Binomial[n - 1, k - 1], {k, 1, n}], {n, 1, 10}]; Flatten[%]
Comments