A141904 Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of some polynomials P(n,x).
1, -1, 1, 1, -2, 1, -1, 23, -1, 1, 1, -44, 14, -4, 1, -1, 563, -818, 22, -5, 1, 1, -3254, 141, -1436, 19, -2, 1, -1, 88069, -13063, 21757, -457, 43, -7, 1, 1, -11384, 16774564, -11368, 7474, -680, 56, -8, 1, -1, 1593269, -1057052, 35874836, -261502, 3982, -688, 212, -3, 1, 1, -15518938, 4651811
Offset: 0
Examples
The polynomials P(n,x) are for n=0 to 5: 1 = P(0,x). -1/3+x = P(1,x). 1/5-2/3*x+x^2 = P(2,x). -1/7+23/45*x-x^2+x^3 = P(3,x). 1/9-44/105*x+14/15*x^2-4/3*x^3+x^4 = P(4,x). -1/11+563/1575*x-818/945*x^2+22/15*x^3-5/3*x^4+x^5 = P(5,x).
References
- P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p.44.
- P. Flajolet, X. Gourdon, B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp.67-78.
Links
- Jean-François Alcover, Roots of P(120,x) in the shape of a cardioid.
Programs
-
Maple
u := proc(i) (-1)^i/(2*i+1) ; end: P := proc(n,x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end: A141904 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end: seq(seq(A141904(n,k),k=0..n),n=0..13) ; # R. J. Mathar, Aug 24 2009
-
Mathematica
ClearAll[u, p]; u[n_] := (-1)^n/(2*n + 1); p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n - i - 1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)
Extensions
Edited and extended by R. J. Mathar, Aug 24 2009
Comments