cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A142048 Triangle of the denominators of the coefficients [x^k] P(n,x) defined in A141904.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 7, 45, 1, 1, 9, 105, 15, 3, 1, 11, 1575, 945, 15, 3, 1, 13, 10395, 175, 945, 9, 1, 1, 15, 315315, 17325, 14175, 189, 15, 3, 1, 17, 45045, 23648625, 7425, 2835, 189, 15, 3, 1, 19, 6891885, 1576575, 23648625, 93555, 945, 135, 45, 1, 1, 21, 72747675, 7309575
Offset: 0

Views

Author

Paul Curtz, Sep 14 2008

Keywords

Comments

Are all the denominators odd?

Crossrefs

Cf. A141904 (numerators).

Programs

  • Mathematica
    ClearAll[u, p]; u[n_] := (-1)^n/(2*n + 1); p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n - i - 1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Denominator (* Jean-François Alcover, Oct 02 2012 *)

Extensions

Edited and extended by R. J. Mathar, Aug 24 2009

A152650 Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of certain polynomials P(n,x) given below.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 9, 4, 1, 1, 2, 9, 8, 5, 1, 1, 4, 27, 32, 25, 6, 1, 1, 4, 81, 32, 125, 18, 7, 1, 1, 8, 81, 128, 625, 36, 49, 8, 1, 1, 2, 243, 256, 625, 54, 343, 32, 9, 1, 1, 4, 729, 1024, 3125, 324, 2401, 256, 81, 10, 1
Offset: 0

Views

Author

Paul Curtz, Dec 10 2008

Keywords

Comments

Let the polynomials P be defined by P(0,x)=u(0), P(n,x)= u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1,x) and coefficients u(i)=1/i!. These u are reminiscent of the Taylor expansion of exp(x). Then P(n,x) = Sum_{k=0..n} c(n,k)*x^k.
n!*P(n,x) are the row polynomials of A152818. - Peter Bala, Oct 09 2011
Conjecture: All roots of P(n,x) are real, hence negative. - Jean-François Alcover, Oct 10 2012

Examples

			The triangle c(n,k) and polynomials start in row n = 0 as:
1 = 1;
1, 1 = 1 + x;
1/2, 2, 1 = 1/2 + 2*x + x^2;
1/6, 2, 3, 1, = 1/6+2*x+3*x^2+x^3
1/24, 4/3, 9/2, 4, 1, = 1/24 + 4/3*x + 9/2*x^2 + 4*x^3 + x^4;
1/120, 2/3, 9/2, 8, 5, 1, = 1/120 + 2/3*x + 9/2*x^2 + 8*x^3 + 5*x^4 + x^5;
1/720, 4/15, 27/8, 32/3, 25/2, 6, 1, = 1/720 + 4/15*x + 27/8*x^2 + 32/3*x^3 + 25/2*x^4 + 6*x^5 + x^6;
1/5040, 4/45, 81/40, 32/3, 125/6, 18, 7, 1 = 1/5040 + 4/45*x + 81/40*x^2 + 32/3*x^3 + 125/6*x^4 + 18*x^5 + 7*x^6 + x^7;
		

Crossrefs

Cf. A152656 (denominators), A140749, A141412, A141904, A142048. A152818.

Programs

  • Maple
    u := proc(i) 1/i! end:
    P := proc(n,x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i,x),i=0..n-1) ; expand(%) ; fi; end:
    A152650 := proc(n,k) p := P(n,x) ; numer(coeftayl(p,x=0,k)) ; end:
    seq(seq(A152650(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Aug 24 2009
  • Mathematica
    ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)

Extensions

Edited and extended by R. J. Mathar, Aug 24 2009

A231121 Denominators of coefficients of expansion of arctan(x)^3.

Original entry on oeis.org

1, 1, 15, 945, 175, 17325, 23648625, 1576575, 7309575, 1283268987, 3360942585, 1932541986375, 135664447443525, 218461268025, 242856109621125, 27604644460267875, 4479480941961650625, 1151866527932995875, 31580724596338947904875, 809762169136896100125, 4742892704944677157875
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[ArcTan[x]^3, {x, 0, 2*n+3}] // Denominator
    (* or *) a[n_] := 3*Sum[2^(i-2)*Binomial[2*(n+1), i-1]*StirlingS1[i, 3]/i!, {i, 3, 2n+3}] // Denominator; Table[a[n], {n, 0, 20}] (* from the formula given by Ruperto Corso in A002429 *)
    Take[Denominator[CoefficientList[Series[ArcTan[x]^3,{x,0,50}],x] ], {4,-1,2}] (* Harvey P. Dale, Apr 07 2017 *)

Formula

Let u(n) = (-1)^n/(2*n+1) and P(n,x) = u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1,x), with P(0,x) = u(0). Then, the terms are the denominators of the coefficients of x^2 in each polynomial.
Showing 1-3 of 3 results.