cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152656 Triangle read by rows: denominators of polynomials from A000142: P(0,x) = 1, P(n,x) = 1/n! + x*Sum_{i=0..n-1} P(n-i-1)/i!. Numerators are A152650.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 45, 40, 3, 6, 1, 1, 1, 40320, 315, 80, 15, 24, 1, 2, 1, 1, 362880, 315, 560, 45, 24, 1, 6, 1, 1, 1, 3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1
Offset: 0

Views

Author

Paul Curtz, Dec 10 2008

Keywords

Comments

a(n) is the last sequence of a trio with, first, A141412 and, second, A142048 (denominators).

Examples

			Contribution from _Vincenzo Librandi_, Dec 16 2012: (Start)
Triangle begins:
        1,
        1,    1,
        2,    1,    1,
        6,    1,    1,   1,
       24,    3,    2,   1,   1,
      120,    3,    2,   1,   1, 1,
      720,   15,    8,   3,   2, 1,  1,
     5040,   45,   40,   3,   6, 1,  1, 1,
    40320,  315,   80,  15,  24, 1,  2, 1, 1,
   362880,  315,  560,  45,  24, 1,  6, 1, 1, 1,
  3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1,
  ...
First column: A000142; second column: A049606. (End)
		

Crossrefs

Programs

  • Mathematica
    ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Denominator (* Jean-François Alcover, Oct 02 2012 *)

Extensions

More terms from Jean-François Alcover, Oct 02 2012

A072597 Expansion of 1/(exp(-x) - x) as exponential generating function.

Original entry on oeis.org

1, 2, 7, 37, 261, 2301, 24343, 300455, 4238153, 67255273, 1185860331, 23000296155, 486655768525, 11155073325917, 275364320099807, 7282929854486431, 205462851526617489, 6158705454187353297, 195465061563672788947, 6548320737474275229347, 230922973019493881984021
Offset: 0

Views

Author

Michael Somos, Jun 23 2002

Keywords

Comments

Polynomials from A140749/A141412 are linked to Stirling1 (see A048594, A129841, A140749). See also P. Flajolet, X. Gourdon, B. Salvy in, available on Internet, RR-1857.pdf (preprint of unavailable Gazette des Mathematiciens 55, 1993, pp. 67-78; for graph 2 see also X. Gourdon RR-1852.pdf, pp. 64-65). What is the corresponding graph for A152650/A152656 = simplified A009998/A119502 linked, via A152818, to a(n), then Stirling2? - Paul Curtz, Dec 16 2008
Denominators in rational approximations of Lambert W(1). See Ramanujan, Notebooks, volume 2, page 22: "2. If e^{-x} = x, shew that the convergents to x are 1/2, 4/7, 21/37, 148/261, &c." Numerators in A006153. - Michael Somos, Jan 21 2019
Call an element g in a semigroup a group element if g^j = g for some j > 1. Then a(n) is the number of group elements in the semigroup of partial transformations of an n-set. Hence a(n) = Sum_{k=0..n} A154372(n,k)*k!. - Geoffrey Critzer, Nov 27 2021

Examples

			G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 261*x^4 + 2301*x^5 + 24343*x^6 + ...
		

References

  • O. Ganyushkin and V Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 70.
  • S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 2, see page 22.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Exp[-x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (Exp[-x] - x), {x, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
    a[ n_] := If[ n < 0, 0, n! Sum[ (n - k + 1)^k / k!, {k, 0, n}]]; (* Michael Somos, Jan 21 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( 1 / (exp(-x + x * O(x^n)) - x), n))};
    
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=0, n, (n-k+1)^k / k!))}; /* Michael Somos, Jan 21 2019 */

Formula

E.g.f.: 1 / (exp(-x) - x).
a(n) = n!*Sum_{k=0..n} (n-k+1)^k/k!. - Vladeta Jovovic, Aug 31 2003
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A052820(k). - Vladeta Jovovic, Apr 12 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} binomial(n, j)*a(j)*j. - Jon Perry, Apr 25 2005
E.g.f.: 1/(Q(0) - x) where Q(k) = 1 - x/(2*k+1 - x*(2*k+1)/(x - (2*k+2)/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 04 2013
a(n) ~ n!/((1+c)*c^(n+1)), where c = A030178 = LambertW(1) = 0.5671432904... - Vaclav Kotesovec, Jun 26 2013
O.g.f.: Sum_{k>=0} k!*x^k/(1 - (k + 1)*x)^(k+1). - Ilya Gutkovskiy, Oct 09 2018
a(n) = A006153(n+1)/(n+1). - Seiichi Manyama, Nov 05 2024

A152818 Array read by antidiagonals: A(n,k) = (k+1)^n*(n+k)!/n!.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 12, 18, 6, 1, 32, 108, 96, 24, 1, 80, 540, 960, 600, 120, 1, 192, 2430, 7680, 9000, 4320, 720, 1, 448, 10206, 53760, 105000, 90720, 35280, 5040, 1, 1024, 40824, 344064, 1050000, 1451520, 987840, 322560, 40320
Offset: 0

Views

Author

Paul Curtz, Dec 13 2008

Keywords

Comments

A009998/A119502 gives triangle of unreduced coefficients of polynomials defined by A152650/A152656. a(n) gives numerators with denominators n! for each row.
Row 0 is A000142. Row 1 is formed from positive members of A001563. Row 2 is A055533. Column 0 is A000012. Column 1 is formed from positive members of A001787. Column 2 is A006043. Column 3 is A006044. - Omar E. Pol, Jan 06 2009

Examples

			From _Omar E. Pol_, Jan 06 2009: (Start)
Array begins:
  1,    1,      2,        6,         24,          120, ...
  1,    4,     18,       96,        600,         4320, ...
  1,   12,    108,      960,       9000,        90720, ...
  1,   32,    540,     7680,     105000,      1451520, ...
  1,   80,   2430,    53760,    1050000,     19595520, ...
  1,  192,  10206,   344064,    9450000,    235146240, ...
  1,  448,  40824,  2064384,   78750000,   2586608640, ...
  1, 1024, 157464, 11796480,  618750000,  26605117440, ...
  1, 2304, 590490, 64880640, 4640625000, 259399895040, ... (End)
Antidiagonal triangle:
  1;
  1,   1;
  1,   4,     2;
  1,  12,    18,     6;
  1,  32,   108,    96,     24;
  1,  80,   540,   960,    600,   120;
  1, 192,  2430,  7680,   9000,  4320,   720;
  1, 448, 10206, 53760, 105000, 90720, 35280, 5040;
		

Crossrefs

Programs

  • Magma
    A152818:= func< n,k | (k+1)^(n-k)*Factorial(k)*Binomial(n,k) >;
    [A152818(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 10 2023
  • Mathematica
    len= 45; m= 1 + Ceiling[Sqrt[len]]; Sort[Flatten[#, 1] &[MapIndexed[ {(2 +#2[[1]]^2 +(#2[[2]] -1)*#2[[2]] +#2[[1]]*(2*#2[[2]] -3))/ 2, #1}&, Table[(k+1)^n*(n+k)!/n!, {n,0,m}, {k,0,m}], {2}]]][[All, 2]][[1 ;; len]] (* From Jean-François Alcover, May 27 2011 *)
    T[n_, k_]:= (k+1)^(n-k)*k!*Binomial[n, k];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 10 2023 *)
  • PARI
    A(n,k) = (k+1)^n*(n+k)!/n! \\ Charles R Greathouse IV, Sep 10 2016
    
  • Sage
    def A152818_row(n):
        R. = ZZ[]
        P = add((n-k+1)^k*x^(n-k+1)*factorial(n)/factorial(k) for k in (0..n))
        return P.coefficients()
    for n in (0..12): print(A152818_row(n))  # Peter Luschny, May 03 2013
    

Formula

E.g.f. for array as a triangle: exp(x)/(1-t*x*exp(x)) = 1+(1+t)*x+(1+4*t+2*t^2)*x^2/2! + (1+12*t+18*t^2+6*t^3)*x^3/3! + .... E.g.f. is int {z = 0..inf} exp(-z)*F(x,t*z), (x and t chosen sufficiently small for the integral to converge), where F(x,t) = exp(x*(1+t*exp(x))) is the e.g.f. for A154372. - Peter Bala, Oct 09 2011
From Peter Bala, Oct 09 2011: (Start)
From the e.g.f., the row polynomials R(n,t) satisfy the recursion R(n,t) = 1 + t*sum {k = 0..n-1} n!/(k!*(n-k-1)!)*R(n-k-1,t). The polynomials 1/n!*R(n,x) are the polynomials P(n,x) of A152650.
Sum_{k=0..n} T(n, k) = A072597(n) (antidiagonal sums). (End)
From G. C. Greubel, Apr 10 2023: (Start)
T(n, k) = (k+1)^(n-k) * k! * binomial(n, k) (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A089148(n). (End)

Extensions

Better definition, extended and edited by Omar E. Pol and N. J. A. Sloane, Jan 05 2009

A119502 Triangle read by rows, T(n,k) = (n-k)!, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 24, 6, 2, 1, 1, 120, 24, 6, 2, 1, 1, 720, 120, 24, 6, 2, 1, 1, 5040, 720, 120, 24, 6, 2, 1, 1, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 362880, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 3628800, 362880, 40320, 5040, 720, 120, 24, 6, 2, 1, 1, 39916800
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), May 26 2006

Keywords

Comments

The reciprocal of each entry in a lower triangular readout of the exponential of a matrix whose entry {j+1,j} equals one (and all other entries are zero). Note all said entries are unit fractions (all numerators are one).
Denominators of unfinished fractional coefficients for polynomials A152650/A152656 = A009998/A119052. - Paul Curtz, Dec 13 2008
Multiplying the n-th diagonal by b_n with b_0 = 1 and then beheading the triangle provides a Gram matrix whose determinant is related to the reciprocal of e.g.f.s as presented in A133314. - Tom Copeland, Dec 04 2016

Examples

			Triangle starts:
   1;
   1, 1;
   2, 1, 1;
   6, 2, 1, 1;
  24, 6, 2, 1, 1;
		

Crossrefs

Cf. A025581.
Cf. A133314.

Programs

  • Magma
    [[Factorial(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 18 2015
  • Mathematica
    Table[Gamma[Binomial[1 + Floor[(1/2) + Sqrt[2*(1 + n)]], 2] - n], {n, 0, 77}]

Formula

T(n,k) = A025581(n,k)!.
a(n) = Gamma(binomial(1 + floor((1/2) + sqrt(2*(1 + n))), 2) - n).

Extensions

Name edited by Peter Luschny, Jun 17 2015

A154372 Triangle T(n,k) = (k+1)^(n-k)*binomial(n,k).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 9, 1, 1, 32, 54, 16, 1, 1, 80, 270, 160, 25, 1, 1, 192, 1215, 1280, 375, 36, 1, 1, 448, 5103, 8960, 4375, 756, 49, 1, 1, 1024, 20412, 57344, 43750, 12096, 1372, 64, 1
Offset: 0

Views

Author

Paul Curtz, Jan 08 2009

Keywords

Comments

From A152650/A152656,coefficients of other exponential polynomials(*). a(n) is triangle A152818 where terms of each column is divided by the beginning one. See A000004, A001787(n+1), A006043=2*A027472, A006044=6*A038846.
(*) Not factorial as written in A006044. See A000110, Bell-Touchard. Second diagonal is 1,4,9,16,25, denominators of Lyman's spectrum of hydrogen, A000290(n+1) which has homogeneous indices for denominators series of Rydberg-Ritz spectrum of hydrogen.
The matrix inverse starts
1;
-1, 1;
3, -4, 1;
-16, 24, -9, 1;
125, -200, 90, -16, 1;
-1296, 2160, -1080, 240, -25, 1;
16807, -28812, 15435, -3920, 525, -36, 1;
.. compare with A122525 (row reversed). - R. J. Mathar, Mar 22 2013
From Peter Bala, Jan 14 2015: (Start)
Exponential Riordan array [exp(z), z*exp(z)]. This triangle is the particular case a = 0, b = 1, c = 1 of the triangle of generalized Stirling numbers of the second kind S(a,b,c) defined in the Bala link. Cf. A059297.
This is the triangle of connection constants when expressing the monomials x^n as a linear combination of the basis polynomials (x - 1)*(x - k - 1)^(k-1), k = 0,1,2,.... For example, from row 3 we have x^3 = 1 + 12*(x - 1) + 9*(x - 1)*(x - 3) + (x - 1)*(x - 4)^2.
Let M be the infinite lower unit triangular array with (n,k)-th entry (k*(n - k + 1) + 1)/(k + 1)*binomial(n,k). M is the row reverse of A145033. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to the present triangle. See the Example section. (End)
T(n,k) is also the number of idempotent partial transformations of {1,2,...,n} having exactly k fixed points. - Geoffrey Critzer, Nov 25 2021

Examples

			With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1        \      /1        \
|1 1     ||0 1       ||0 1      |      |1  1      |
|1 3 1   ||0 1 1     ||0 0 1    |... = |1  4  1   |
|1 6 5 1 ||0 1 3 1   ||0 0 1 1  |      |1 12  9  1|
|...     ||0 1 6 5 1 ||0 0 1 3 1|      |...       |
|...     ||...       ||...      |      |          |
- _Peter Bala_, Jan 13 2015
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(k+1)^(n-k)*Binomial(n,k) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    T[n_, k_] := (k + 1)^(n - k)*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 15 2016 *)

Formula

T(n,k) = (k+1)^(n-k)*binomial(n,k). k!*T(n,k) gives the entries for A152818 read as a triangular array.
E.g.f.: exp(x*(1+t*exp(x))) = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + (1+12*t+9*t^2+t*3)*x^3/3! + .... O.g.f.: Sum_{k>=1} (t*x)^(k-1)/(1-k*x)^k = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... Row sums are A080108. - Peter Bala, Oct 09 2011
From Peter Bala, Jan 14 2015: (Start)
Recurrence equation: T(n+1,k+1) = T(n,k+1) + Sum_{j = 0..n-k} (j + 1)*binomial(n,j)*T(n-j,k) with T(n,0) = 1 for all n.
Equals the matrix product A007318 * A059297. (End)
Showing 1-5 of 5 results.