cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154613 Prime p such that 23p + 10 is prime.

Original entry on oeis.org

3, 11, 17, 29, 41, 47, 53, 59, 101, 113, 131, 167, 173, 179, 227, 239, 251, 269, 281, 383, 431, 449, 461, 479, 503, 509, 557, 563, 593, 641, 647, 677, 719, 743, 773, 797, 809, 827, 887, 911, 929, 953, 971, 977, 983, 1019, 1049, 1061, 1163, 1193, 1217, 1229
Offset: 1

Views

Author

Vincenzo Librandi, Jan 15 2009

Keywords

Crossrefs

Cf. A141914 (Primes congruent to 10 mod 23).

Programs

  • Magma
    [p: p in PrimesUpTo(2000)|IsPrime(23*p+10)]; // Vincenzo Librandi, Jul 31 2012
  • Maple
    a := proc (n) if isprime(n) = true and isprime(23*n+10) = true then n else end if end proc: seq(a(n), n = 1 .. 1400); # Emeric Deutsch, Jan 21 2009
  • Mathematica
    Select[Prime[Range[250]],PrimeQ[23#+10]&]  (* Harvey P. Dale, Feb 25 2011 *)

Extensions

Extended by Emeric Deutsch, Jan 21 2009

A274202 Primes congruent to 31 mod 65.

Original entry on oeis.org

31, 421, 811, 941, 1201, 1721, 2111, 2371, 3541, 3671, 3931, 4451, 5101, 5231, 5881, 6011, 6271, 6661, 6791, 8221, 8741, 9001, 9391, 9521, 9781, 10301, 10691, 11471, 11731, 12251, 12511, 12641, 13291, 13421, 13681, 14071, 14461, 14591, 14851, 15241, 15761
Offset: 1

Views

Author

Vincenzo Librandi, Jun 13 2016

Keywords

Comments

Subsequence of A030430 and A102732.

Crossrefs

Cf. similar sequences of the type primes congruent to k mod 2*k+3: A045392 (k=2), A102732 (k=5), A138629 (k=7), A141873 (k=8), A141914 (k=10), A141935 (k=11), A141989 (k=13), A142018 (k=14), A142086 (k=16), A142126 (k=17), A142216 (k=19), A142269 (k=20), A142373 (k=22), A142433 (k=23), A142555 (k=25), A142619 (k=26), A142755 (k=28), A142827 (k=29), this sequence (k=31), A154621 (k=32), A154624 (k=34), A154628 (k=35).

Programs

  • Magma
    [p: p in PrimesUpTo(20000) | p mod 65 eq 31];
  • Mathematica
    Select[Prime[Range[2000]], MemberQ[{31}, Mod[#, 65]] &]
    Select[Range[31,16000,65],PrimeQ] (* Harvey P. Dale, May 06 2018 *)
Showing 1-2 of 2 results.