A141947 A manufactured symmetrical triangular sequence of coefficients based on: t(n,m)=(Gamma[1 - m + n] Hypergeometric2F1Regularized[1, 1 + 2 m - n, 2 + m, -1])/Gamma[ -2 m + n]. The function is taken have backward and half forward.
0, 0, 1, 1, 0, 3, 3, 0, 1, 7, 7, 1, 0, 4, 15, 15, 4, 0, 1, 11, 31, 31, 11, 1, 0, 5, 26, 63, 63, 26, 5, 0, 1, 16, 57, 127, 127, 57, 16, 1, 0, 6, 42, 120, 255, 255, 120, 42, 6, 0, 1, 22, 99, 247, 511, 511, 247, 99, 22, 1, 0, 7, 64, 219, 502, 1023, 1023, 502, 219, 64, 7, 0
Offset: 1
Examples
{0, 0}, {1, 1}, {0, 3, 3, 0}, {1, 7, 7, 1}, {0, 4, 15, 15, 4, 0}, {1, 11, 31, 31, 11, 1}, {0, 5, 26, 63, 63, 26, 5, 0}, {1, 16, 57, 127, 127, 57, 16, 1}, {0, 6, 42, 120, 255, 255, 120, 42, 6, 0}, {1, 22, 99, 247, 511, 511, 247, 99, 22, 1}, {0, 7, 64, 219, 502, 1023, 1023, 502, 219, 64, 7, 0}
Crossrefs
Cf. A052509.
Programs
-
Mathematica
In[97]:= Table[Join[Table[(Gamma[1-m+n] Hypergeometric2F1Regularized[1,1+2 m-n,2+m,-1])/Gamma[ -2 m+n],{m,Floor[n/2],0,-1}],Table[(Gamma[1-m+n] Hypergeometric2F1Regularized[1,1+2 m-n,2+m,-1])/Gamma[ -2 m+n],{m,0,Floor[n/2]}]],{n,0,10}]; Flatten[%]
Formula
t(n,m)=(Gamma[1 - m + n] Hypergeometric2F1Regularized[1, 1 + 2 m - n, 2 + m, -1])/Gamma[ -2 m + n].
Comments