A142147 Irregular triangle read by rows: first row is 1, and the n-th row gives the coefficients in the expansion of (1/2*x)*(1 - 2*x*(1 - x))^(n + 1)*Li(-n, 2*x*(1 - x)), where Li(n, z) is the polylogarithm.
1, 1, -1, 1, 1, -4, 2, 1, 7, -12, -4, 12, -4, 1, 21, 0, -102, 100, 4, -32, 8, 1, 51, 160, -532, -24, 904, -672, 48, 80, -16, 1, 113, 980, -1094, -5128, 8760, -736, -6224, 3920, -432, -192, 32, 1, 239, 4284, 5276, -43964, 19764, 90272, -114080, 19824, 36304
Offset: 0
Examples
Triangle begins: 1; 1, -1; 1, 1, -4, 2; 1, 7, -12, -4, 12, -4; 1, 21, 0, -102, 100, 4, -32, 8; 1, 51, 160, -532, -24, 904, -672, 48, 80, -16; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
Links
- Eric Weisstein's World of Mathematics, Polylogarithm
Crossrefs
Programs
-
Mathematica
p[x_, n_] = If[n == 0, 1, (1 + 2*(-1 + x)*x)^(n + 1)*PolyLog[-n, 2*x*(1 - x)]/(2*x)]; Table[CoefficientList[FullSimplify[Expand[p[x, n]]], x], {n, 0, 10}]//Flatten
Formula
E.g.f.: ((1 - x)*(1 - 2*x)*exp(t*(1 + 2*x^2)) + x*exp(2*t*x))/(exp(2*t*x) - 2*x*(1 - x)*exp(t*(1 + 2*x^2))). - Franck Maminirina Ramaharo, Oct 22 2018
Extensions
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 21 2018