cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142245 Expansion of 2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)).

Original entry on oeis.org

0, 12, 34, 68, 124, 214, 360, 596, 978, 1596, 2596, 4214, 6832, 11068, 17922, 29012, 46956, 75990, 122968, 198980, 321970, 520972, 842964, 1363958, 2206944, 3570924, 5777890, 9348836, 15126748, 24475606, 39602376, 64078004, 103680402, 167758428, 271438852, 439197302
Offset: 0

Views

Author

Paul Curtz, Sep 18 2008

Keywords

Comments

The generic a(n) = 2*a(n-1)-a(n-3) for this family of recurrences (see the link to the OEIS index) leads directly to a common symmetry of the form a(n+1)-2a(n) = 12, 10, 0, -12, -34, -68, -124,... = 12, 10, -a(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer/;n>=0]:=23 Fibonacci[n]+11 LucasL[n]-22 (* Todd Silvestri, Dec 16 2014 *)
    LinearRecurrence[{2,0,-1},{0,12,34},40] (* Harvey P. Dale, May 12 2015 *)
  • PARI
    concat(0, Vec(2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)) + O(x^50))) \\ Colin Barker, Nov 13 2017

Formula

G.f.: 2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)).
a(n) = 10*A094707(2*n) + A094707(2*n+1).
a(n) = 2*A022095(n+3) - 22. - R. J. Mathar, Jul 07 2011
a(n) = 23*F(n)+11*L(n)-22 = 23*A000045(n)+11*A000032(n)-22, where F(n) and L(n) are the n-th Fibonacci and Lucas numbers, respectively. - Todd Silvestri, Dec 16 2014
a(n) = (1/5)*(-110 + (55-23*sqrt(5))*((1-sqrt(5))/2)^n + ((1+sqrt(5))/2)^n*(55+23*sqrt(5))). - Colin Barker, Nov 13 2017