cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201820 Numbers k such that 90*k + 23 is prime.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 25, 28, 29, 32, 34, 39, 40, 42, 45, 47, 50, 52, 53, 55, 57, 59, 63, 64, 67, 68, 70, 76, 78, 84, 85, 87, 90, 95, 96, 97, 99, 102, 103, 105, 108, 109, 110, 112, 113, 116, 119, 122, 123, 125, 129, 131
Offset: 1

Views

Author

J. W. Helkenberg, Dec 05 2011

Keywords

Comments

This sequence was generated by adding 12 Fibonacci-like sequences. Looking at the format 90*k+23 modulo 9 and modulo 10 we see that all entries of A142324 have digital root 5 and last digit 3. (Reverting the process is an application of the Chinese remainder theorem.)

Crossrefs

Programs

Formula

a(n) = (A142324(n) - 23)/90.

A214360 Primes congruent to 23 modulo 3120613860.

Original entry on oeis.org

23, 3120613883, 6241227743, 9361841603, 12482455463, 15603069323, 18723683183, 21844297043, 24964910903, 28085524763, 34326752483, 43688594063, 62412277223, 115462712843, 124824554423, 156030693023, 159151306883, 171633762323, 180995603903, 196598673203
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2012

Keywords

Comments

A211889(9) = 3120613860;
the first 10 terms constitute row 9 of triangle A211890, an arithmetic progression of 10 primes.

Crossrefs

Cf. A010051.
Sequences of numbers congruent 23 modulo m: A134517 m=24, A141945 m=25, A140375 m=26, A141963 m=27, A141974 m=28, A141999 m=29, A132235 m=30, A142027 m=31, A142044 m=32, A142062 m=33, A142091 m=35, A142107 m=36, A142132 m=37, A142173 m=39, A142192 m=40, A142220 m=41, A142244 m=42, A142272 m=43, A142302 m=44, A142324 m=45, A142374 m=47, A142405 m=48, A142433 m=49, A142490 m=51, A142518 m=52, A142553 m=53, A142617 m=55, A142650 m=56, A142679 m=57, A142750 m=59, A142790 m=60, A142821 m=61, A142902 m=63, A142935 m=64, A140844 m=210.

Programs

  • Haskell
    a214360 n = a214360_list !! (n-1)
    a214360_list = [x | k <- [0..], let x = 3120613860*k+23, a010051' x == 1]
    
  • Maple
    select(isprime,[seq(23+i*3120613860,i=0..1000)]); # Robert Israel, Jun 07 2015
  • Mathematica
    Select[Range[23, 2 10^11, 3120613860], PrimeQ] (* Vincenzo Librandi, Jun 07 2015 *)
  • PARI
    is(n)=isprime(n) && n%3120613860==23 \\ Charles R Greathouse IV, Jul 02 2016

Formula

a(n) ~ 658414080n log n. - Charles R Greathouse IV, Jul 02 2016
Showing 1-2 of 2 results.