A142468 An eight-products triangle sequence of coefficients: T(n,k) = binomial(n,k) * Product_{j=1..7} j!*(n+j)!/((k+j)!*(n-k+j)!).
1, 1, 1, 1, 9, 1, 1, 45, 45, 1, 1, 165, 825, 165, 1, 1, 495, 9075, 9075, 495, 1, 1, 1287, 70785, 259545, 70785, 1287, 1, 1, 3003, 429429, 4723719, 4723719, 429429, 3003, 1, 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 45, 45, 1; 1, 165, 825, 165, 1; 1, 495, 9075, 9075, 495, 1; 1, 1287, 70785, 259545, 70785, 1287, 1; 1, 3003, 429429, 4723719, 4723719, 429429, 3003, 1; 1, 6435, 2147145, 61408347, 184225041, 61408347, 2147145, 6435, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Magma
B:=Binomial; [B(n,k)*(&*[B(n+2*j, k+j)/B(n+2*j, j): j in [1..7]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 14 2019, Mar 03 2021
-
Maple
b:= binomial; T:= (n, k) -> b(n, k)*mul(b(n+2*j, k+j)/b(n+2*j, j), j = 1..7); seq(seq(T(n, k), k = 0..n), n = 0..10); # G. C. Greubel, Nov 14 2019, Mar 03 2021
-
Mathematica
T[n_, k_]:= T[n,k]= With[{B=Binomial}, B[n,k]* Product[B[n+2*j,k+j]/B[n+2*j,j], {j, 7}] ]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Nov 14 2019, Mar 03 2021 *)
-
PARI
T(n,k) = b=binomial; b(n,k)*prod(j=1,7, b(n+ 2*j,k+j)/b(n+2*j,j)); \\ G. C. Greubel, Nov 14 2019, Mar 03 2021
-
Sage
b=binomial; def T(n, k): return b(n,k)*product(b(n+2*j,k+j)/b(n+2*j,j) for j in (1..7)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 14 2019, Mar 03 2021
Formula
T(n,k) = binomial(n,k)*Product_{j=1..7} j!*(n+j)!/((k+j)!*(n-k+j)!).
Extensions
Edited by G. C. Greubel, Nov 14 2019
Comments