cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142591 Composite terms in A143578.

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 779, 899, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6887, 7067, 7279, 7739, 8159, 8639, 9179, 9593
Offset: 1

Views

Author

Leroy Quet, Aug 24 2008

Keywords

Comments

Conjecture: This consists exactly of the semiprimes p*q for which p + q divides p*q + 1. - Mohamed Bouhamida, Aug 17 2009 (Comment edited by N. J. A. Sloane, Sep 01 2019.)

Crossrefs

Cf. A143578.

Programs

  • Maple
    filter:= proc(n) local k,D,j,t;
      D:= select(t -> t^2 <= n, numtheory:-divisors(n));
      j:= max(D);
      t:= j+n/j;
      andmap(k -> (k+n/k) mod t = 0, D);
    end proc:
    count:= 0: S:= NULL:
    for n from 2  while count < 100 do
      if  isprime(n) then next
      elif filter(n) then
        count:= count+1;
        S:= S, n;
      fi
    od:
    S; # Robert Israel, Sep 01 2019
  • Mathematica
    Select[Reap[Module[{n, k}, For[n = 1, n < 10000, n++, k = Max[Select[Divisors[n], # <= Sqrt[n]&]]; If[Length[Union[ Mod[Divisors[n] + n/Divisors[n], k+n/k]]] == 1, Sow[n]]]]][[2, 1]], CompositeQ] (* Jean-François Alcover, Feb 07 2023 *)

Extensions

More terms from M. F. Hasler, Aug 25 2008
a(33)-a(46) from Ray Chandler, Jun 21 2009